Sensor-Based Robots:
Algorithms and Architectures

Edited by C. S. George Lee

NATO ASI Series

Series F: Computer and Systems Sciences, Vol. 66

NATO ASI Series

Advanced Science Institutes Series

A series presenting the results of activities sponsored by the NATO Science
Committee, which aims at the dissemination of advanced scientific and
technological knowledge, with a view to strengthening links between scientific
communities.

The Series is published by an international board of publishers in conjunction with
the NATO Scientific Affairs Division

A Life Sciences Plenum Publishing Corporation

B Physics London and New York

C Mathematical and Kluwer Academic Publishers
Physical Sciences Dordrecht, Boston and London

D Behavioural and
Social Sciences
E Applied Sciences

F Computerand Springer-Verlag
Systems Sciences BerlinHeidelberg New York
G Ecological Sciences London Paris Tokyo Hong Kong
H Cell Biology Barcelona
I Global Environmental
Change

NATO-PCO DATABASE

The electronic index to the NATO ASI Series provides full bibliographical
references (with keywords and/or abstracts) to more than 30000 contributions
from international scientists published in all sections of the NATO ASI Series.
Access to the NATO-PCO DATABASE is possible in two ways:

—via online FILE 128 (NATO-PCO DATABASE) hosted by ESRIN,
Via Galileo Galilei, 1-00044 Frascati, Italy.

—via CD-ROM “NATO-PCO DATABASE” with user-friendly retrieval software
in English, French and German (© WTV GmbH and DATAWARE Technologies
Inc. 1989).

The CD-ROM can be ordered through any member of the Board of Publishers
or through NATO-PCO, Overijse, Belgium.

The ASI Series Books Published as a Result of
Activities of the Special Programme on
SENSORY SYSTEMS FOR ROBOTIC CONTROL

This book contains the proceedings of a NATO Advanced Research Workshop held within the
activities of the NATO Special Programme on Sensory Systems for Robotic Control, running
from 1983 to 1988 under the auspices of the NATO Science Committee.

The books published so far as a result of the activities of the Special Programme are:

Vol. F25: Pyramidal Systems for Computer Vision. Edited by V. Cantoni and S. Levialdi. 1986.

Vol. F29: Languages for Sensor-Based Control in Robotics. Edited by U. Rembold and
K. Hérmann. 1987.

Vol. F33: Machine Intelligence and Knowledge Engineering for Robotic Applications. Edited by
A.K.C.Wong and A. Pugh. 1987.

Vol. F42: Real-Time Object Measurement and Classification. Edited by A. K. Jain. 1988.
Vol. F43: Sensors and Sensory Systems for Advanced Robots. Edited by P. Dario. 1988.

Vol. F44: Signal Processing and Pattern Recognition in Nondestructive Evaluation of Materials.
Edited by C.H. Chen. 1988.

Vol. F45: Syntactic and Structural Pattern Recognition. Edited by G. Ferraté, T. Pavlidis,
A. Sanfeliu and H. Bunke. 1988.

Vol. F50: CAD Based Programming for Sensory Robots. Edited by B. Ravani. 1988.
Vol. F52: Sensor Devices and Systems for Robotics. Edited by A. Casals. 1989.
Vol. F57: Kinematic and Dynamic Issues in Sensor Based Control. Edited by G. E. Taylor. 1990. -

Vol. F58: Highly Redundant Sensing in Robotic Systems. Edited by J. T. Tou and J. G. Balchen.
1990.

Vol. F63: Traditional and Non-Traditional Robotic Sensors. Edited by T.C. Henderson. 1990.
Vol. F64: Sensory Robotics for the Handling of Limp Materials. Edited by P. M. Taylor. 1990.
Vol. F65: Mapping and Spatial Modelling for Navigation. Edited by L.F. Pau. 1990.

Vol. F66: Sensor-Based Robots: Algorithms and Architectures. Edited by C.S.G. Lee. 1991.

o

Series F: Computer and Systems Sciences, Vol. 66

Sensor-Based Robots:
Algorithms and Architectures

Edited by

C.S. George Lee

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907-0501, USA

Springer-Verlag Berlin Heidelberg NewYork -
London Paris Tokyo Hong Kong Barcelona
Published in cooperation with NATO Scientific Affairs Division

Proceedings of the NATO Advanced Research Workshop on Sensor-Based
Robots: Algorithms and Architectures, held in Chateau de Bonas, France,
October 12—14, 1988.

ISBN-13: 978-3-642-75532-3 e-ISBN-13: 978-3-642-75530-9
DOI: 10.1007/978-3-642-75530-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on
microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only
permitted under the provisions of the German Copyright Law of September 9, 1965, in its current version, 1985,
and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1991
Softcover reprint of the hardcover 1st edition 1991

Preface

Most industrial robots today have little or no sensory capability. Feedback is limited to
information about joint positions, combined with a few interlock and timing signals. These
robots can function only in an environment where the objects to be manipulated are precisely
located in the proper position for the robot to grasp (i.e., in a structured environment). For
many present industrial applications, this level of performance has been adequate. With the
increasing demand for high performance sensor-based robot manipulators in assembly tasks,
meeting this demand and challenge can only be achieved through the consideration of: 1)
efficient acquisition and processing of internal/external sensory information, 2) utilization and
integration of sensory information from various sensors (tactile, force, and vision) to acquire
knowledge in a changing environment, 3) exploitation of inherent robotic parallel algorithms
and efficient VLSI architectures for robotic computations, and finally 4) system integration
into a working and functioning robotic system. This is the intent of the Workshop on
Sensor-Based Robots: Algorithms and Architectures — to study the fundamental research
issues and problems associated with sensor-based robot manipulators and to propose
approaches and solutions from various viewpoints in improving present day robot manipula-
tors in the areas of sensor fusion and integration, sensory information processing, and parallel
algorithms and architectures for robotic computations.

This Workshop was held on October 12-14, 1988, at Chateau de Bonas, Bonas, France,
and was held in conjunction with another NATO Advanced Research Workshop on
Knowledge-Based Robot Control, organized by Professor George N. Saridis of Rensselaer
Polytechnic Institute and Professor Harry E. Stephanou of George Mason University, which
was held at the same location on October 10-12, 1988. Both Workshops addressed a common
theme on October 12 — Sensor Fusion. The purpose of holding these two Workshops back to
back was to reinforce each Workshop’s findings and to integrate the results since they are
closely interrelated.

A total of 30 participants attended the Workshop with 14 speakers, 12 participants, and 4
committee members. Each day of the Workshop was devoted primarily to a brief presenta-
tion of research results followed by a discussion in each of the three major areas in sensor-
based robots: sensor fusion and integration, vision algorithms and architectures, and neural
networks, parallel algorithms and control architectures. This book includes all the twelve
papers that were presented at the Workshop.

A total of five papers were presented at the Workshop addressing problems in sensor
fusion and integration, such as sensing with uncertainty, sensor modeling, description,
representation, and integration of sensory information in multisensor environment. Only
three papers were included in this book and the other two papers were included in the NATO
ARW book, Knowledge-Based Robot Control, edited by Professors G. N. Saridis and H. E.
Stephanou. The first paper, ‘“‘An Integrated Sensor System for Robots,”” by Rembold and
Levi, describes an experimental autonomous mobile system with sensors, called KAMRO
(KArlsruhe Mobile RObot), for manufacturing applications. The paper details the

Vi

architecture and functions of the sensor system of KAMRO. The second paper, ‘‘Robot Tac-
tile Perception,”” by Buttazzo, Bicchi, and Dario, describes an active or exploratory sensing
strategy for a tactile sensor in a 4 DOF ‘‘hand.”” The paper describes an approach for decom-
posing complex tactile operations into elementary sensory-motor actions, each of which
extracts a specific feature from the explored object. The third paper, ‘‘Uncertainty in Robot
Sensing,”’ by Grant, describes approaches and possible solutions for dealing with the inherent
uncertainty that is associated with the modeling, planning and motion of manipulators and
workpieces.

For the vision algorithms and architectures session, algorithms and architectures of
model-based and/or knowledge-based vision systems were addressed to add intelligence to
robotic systems. A total of four papers were presented in this area. The paper, ‘‘Robotic
Vision Knowledge System,”” by Wong, describes the use of local features and geometric con-
straints for constructing knowledge-based vision system for object recognition. The paper,
““Algorithm for Visible Surface Pattern Generation — a Tool for 3D Object Recognition,”” by
Majumdar, Rembold, and Levi, describes the use of a CAD model for modeling and the
manipulation of 3D objects which can be transformed and used for vision recognition. The
paper, ‘‘Knowledge-Based Robot Workstation: Supervisor Design,”” by Kelley, describes a
knowledge-based system for planning and scheduling tasks to be executed on various robotic
workstations. The paper, ‘‘Robot/Vision System Calibrations in Automated Assembly,” by
King, Puskorius, Yuan, Meier, Jeyabalan, and Feldkamp, describes a fully-implemented
vision-guided robotic system. The robot (Merlin robot) is equipped with a pair of CCD cam-
eras for automated assembly tasks.

For the neural networks, parallel algorithms and control architectures session, a total of
five papers were presented. The paper, ‘‘A Unified Modeling of Neural Networks Architec-
tures,”” by Kung and Hwang, proposes a unified modeling formulation for a variety of
artificial neural networks (ANNS), which leads to a basic structure for a universal simulation
tool and neurocomputer architecture. The paper, ‘‘Practical Neural Computing for Robots:
Prospects for Real-Time Operation,”” by Aleksander, describes the use of a neural machine
called WISARD for pattern classification and its extension to experiential knowledge-based
tasks. The paper, ‘‘Self-Organizing Neuromorphic Architecture for Manipulator Inverse
Kinematics,”” by Barhen and Gulati, proposes a novel neural learning formalism, based on
“‘terminal attractors’” for solving a large class of inverse problems, including the inverse
kinematics of redundant robots. The paper, ‘‘Robotics Vector Processor Architecture for
Real-Time Control,”” by Orin, Sadayappan, Ling, and Olson, describes a restructurable VLSI
robotic vector processor (RVP) architecture, which exploits the parallelism in the low-level
matrix-vector operations in robot arm kinematics and dynamics computation. Interconnec-
tion of multiple RVPs can be used to match the computational requirements of specific robot
control strategies. The paper, ‘‘On the Parallel Algorithms for Robotic Computations,” by
Lee, describes the inherent parallelism in robotic computation which was exploited to
develop efficient parallel algorithms to be computed on SIMD machines for controlling
robots. Finally, a report on the group discussion entitled ¢‘Neural Networks in Robotics’’ was
written by Torras.

Vil

The presentations and discussions at this Workshop only present a small sample of solu-
tions for an important research area of algorithms and architectures for sensor-based robots. 1
expect the research in this area to continue to grow, and more NATO Advanced Research
Workshops about this area may be appropriately scheduled in the near future.

Finally, I would like to take this opportunity to thank Dr. Norm Caplan of the National
Science Foundation (USA) for his continued encouragement throughout the process of organ-
izing and realizing this Workshop. I also would like to thank the Organizing Committee, Pro-
fessor R. L. Kashyap of Purdue University, USA, Professor F. Nicolo of University of Rome,
Italy, Professor U. Rembold of Universitiit Karlsruhe, FRG, and Professor H. E. Stephanou of
George Mason University, USA, for their hard work for putting the program together. Spe-
cial thanks are also due to Ms. Dee Dee Dexter for her clerical work associated with the
Workshop and for putting all the manuscripts together. Last but not the least is Professor G.
N. Saridis who deserves special thanks for his advice on organizing the Workshop, without
whose continued push for perfection, the Workshop would not have been a success.

C. S. George Lee

CONTENTS

. SENSOR FUSION AND INTEGRATION

An Integrated Sensor System for Robotsccccvveevreciniceceeececcecr
U. Rembold (University of Karlsruhe, FRG) and
P. Levi (Technical University of Munich, FRG)

Robot Tactile Perceptionccccoceiiiiiniinicnnenene e
G. Buttazzo and P. Dario (University of Pisa, Italy) and

A. Bicchi (University of Bologna, Italy)

Uncertainty in Robot SenSiNGccccoevimreiiiieciece e
E. Grant (The Turing Institute, Glasgow, UK)

II. VISION ALGORITHMS AND ARCHITECTURES

Robotic Vision Knowledge Systemcccccoevveiieiciiccie e
A.K. C. Wong (University of Waterloo, Canada)

Algorithm for Visible Surface Pattern Generation —

a Tool for 3D Object RECOGNItIONcoccueeiiieeerececee e
J. Majumdar, P. Levi, and U. Rembold (University of Karlsruhe, FRG)

Knowledge-Based Robot Workstation: Supervisor Designcccceeeuvveenrnnee..e.
R. B. Kelley (Rensselaer Polytechnic Institute, Troy, USA)

Robot/Vision System Calibrations in Automated Assemblyccccecvevevemeenee...
F.G.King, G. V. Puskorius, F. Yuan, R. C. Meier, V. Jeyabalan, and
L. A. Feldkamp (Ford Motor Company, Dearborn, USA)

lll. NEURAL NETWORKS, PARALLEL ALGORITHMS AND
CONTROL ARCHITECTURES

A Unified Modeling of Neural Networks Architecturesccccoveuvrevveeeenennee..
S. Y. Kung (Princeton University, USA) and
J. N. Hwang (University of Washington, Seattle, USA)

Practical Neural Computing for Robots:

Prospects for Real-Time Operationccccocuveevrerieeeeeneceeeeece e
I. Aleksander (Imperial College of Science, Technology and Medicine, London, UK)

Self-Organizing Neuromorphic Architecture for
Manipulator Inverse Kinematics
J. Barhen and S. Gulati (Jet Propulsion Laboratory, Pasadena, USA)

Robotics Vector Processor Architecture
for Real-Time CONIOluueeeiiceeeeeereee e ceeccerrrree e e e e e e s e abeeesrer e e e e e s e 203
D. E. Orin, P. Sadayappan and K. W. Olson (Ohio State University, Columbus, USA)
Y. L. C. Ling (Boeing Electronics Co., Bellevue, USA)

On the Parallel Algorithms for Robotic Computationscccccccviviiinieiiiinnnns 239
C.S. G. Lee (Purdue University, West Lafayette, USA)

Report on the Group Discussion about
Neural Networks in RODOtICS ...c.eviiiiiieieiereeeee e 281
C. Torras (Institut de Cibernetica, Barcelona, Spain)

List of Lecturers and Pérticipants .. 283

Part 1

Sensor Fusion and Integration

ERT 2|J|_l}>|

An Integrated Sensor System for Robots

Ulrich Rembold Paul Levi
Institute for Realtime Computer Institute for Computer Science
Systems and Robotics Technical University of Munich
University of Karlsruhe 8000 Munich ‘
7500 Karlsruhe Federal Republic of Germany
Federal Republic of Germany

Summary

In this paper the architecture and functions of the sensor system of an
autonomous mobile system are described. The sensor system supports the
operation of the planning, execution and supervision modules necessary to
operate the robot. Since there is a multitude of concepts of vehicles available
the sensor system will be explained with the help of an autonomous mobile
assembly robot which is being developed at the University of Karlsruhe. The
vehicle contains a navigator, a docking module and an assembly planner. The
driving is done with the help of cameras and sonic sensors in connection
with a road map under the direction of the navigator. The docking maneuver
is controlled by sensors and the docking supervisor. The assembly of the two
robot arms is prepared by the planner and controlled by a hierarchy of

sensors. The robot actions are planned and controlled by several expert
systems.

1 Introduction

For several years, various autonomous mobile robots are being developed in
Europe, Japan and the United States. Typical areas of application are
mining, material movement, work in atomic reactors, inspection of under-
water pipelines, work in outer space, leading blind people, transportation of
patients in a hospital, etc. The first results of these research endeavors

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Springer-Verlag Berlin Heidelberg 1991

indicate that many basic problems still have to be solved until a real
autonomous mobile vehicle can be created; e.g. the development of an
integrated sensor system for the robot is a very complex effort. To recognize
stationary and moving objects from a driving vehicle is several orders of
magnitude more complex than the identification of workpieces by a
stationary camera system. In most cases the autonomous system needs
various sensors. For processing of multi-sensor signals, science has not
found no good solution to date. An additional problem imposes the
presentation and processing of the knowledge needed for operating the
sensor system. Unexpected obstacles have to be recognized by the sensor
and interpreted. If necessary, an alternate coarse of action has to be
planned.

Seldom, an autonomous system is used for driving missions only. In general,
it has retrieve parts from a storage, to bring them to a work table and to
assemble them to a product, Fig. 2. All work has to be done autonomously,
according to a defined manufacturing plan which is given to the system. In
this article, the sensor module for an autonomous mobile system is being
described, whereby the functions are explained with the help of the
Karlsruhe Autonomous Mobile Assembly Robot (KAMRO).

2 Autonomous Mobile Systems for Manufacturing

There are various applications for autonomous systems in manufacturing.
Most of the early projects concerned with this subject, involved the
conception and implementation of vehicles for the movement of materials
and workpieces. Hitherto, the efforts only succeeded in developing semi-
automatic vehicles which can follow a path laid out by a guide system, such
as an induction loop or a painted stripe on the floor. This type of guidance
needs a simple sensoric and control strategy to steer the vehicle. The
developments allowed to significantly increase the flexibility of
manufacturing systems, whereby various manufacturing orders may be
processed by a different combination of machine tools. Thus, it is possible to

conceive simple programmable manufacturing facilities. However, the
motion of the vehicle is confined by the guide system.

With autonomous mobile robots it is possible to develop manufacturing
plants of great flexibility. Any combination of machine tools may be selected
according to a virtual manufacturing concept. E.g. an autonomous assembly
system equipped with robot arms is capable of working at various assembly
stations. For welding or riveting tasks, the robot can move along a large
object, such as the hull of a ship and perform the desired operations. An
increase in flexibility can only be obtained by the use of knowledge based
planning, execution and supervision modules which are sensor supported. In
addition, omnidirectional drive systems have to be conceived, capable of
giving the vehicle a three-dimensional flexibility, including turning on a
spot.

3 Components of an Autonomous Mobile System

An autonomous system must be capable of planning and executing a task
according to a given assignment. When a plan is available, its execution can
start. A complex sensor system must be activated which leads and supervises
the travel of the vehicle. Furthermore, it is necessary to recognize and solve
conflicts with the help of a knowledge processing module. The basic
components of an autonomous intelligent robot are shown in Fig. 3. To
conceive and build these components, expertise of many disciplines such as
physics, electronics, computer science, mechanical engineering, etc. is
required. It is very important to design good interfaces between the
functional components of the system.

The most difficult task is building the software. This is a universal problem
with automation efforts involving computers. Designing software for
autonomous vehicles is, however, complicated by the fact that very little is

known about their basic concepts. An autonomous vehicle must have the
following capabilities:

- autonomous planning and preparation of actions according to a given
task

- independent execution and supervision of the actions

- understanding of the environment and interpretation of the results
from sensor information

- independent reaction to unforeseen events

- passive and active learning capabilities

Figure 4 shows the planning and control system of the autonomous vehicle.
It consists of several hardware and software modules which are
interconnected to a functional unit.

The planner obtains information to assemble a product. In order to execute
the assignment knowledge about the product is obtained from a CAD
database. Furthermore, the robot has to know its environment, operating
parameters and sensor hypotheses. This knowledge is obtained from a world
model. The information about its work scenario must be current and
dynamically updated by the sensor system. The planning is a very difficult
and time consuming process and is done off-line with a powerful scientific
computer. Since the planner needs live sensor data a link to the computers
executing the plan must be provided.

The execution of the plan is done by a distributed vehicle computer. There
are several CPUs operating in parallel to expedite the processing of the
work assignment. The vehicle computers interprete stepwise the
instructions and execute them. In addition, expert knowledge is given to the
vehicle computer to process sensor information and to solve conflicts which
may arise during the navigation, docking or assembly. Since the size of the
vehicle computer is restricted, it only can solve simple problems. In serious
situations the main computer will be notified and it in turn tries to find a
solution. It will also prepare and issue a situation report for the operator.

The supervisor observes the operation of the vehicle and reports any
problems. There are two types of disturbance which may occur, they are of

7

parametric and structured nature. Parametric problems stem from wrong
sensor parameters. If properly recognized they can be corrected locally.
Structured problems stem from unforeseen changes in the robot world
where the location of parts may have changed. In this case the operation has
to be replanned off-line by the planner. To perform its task, the supervisor
constantly reads and evaluates sensor data. Since conclusions may have to be
drawn from measurements of various sensors the evaluation of the sensor
data may be very involved.

The control module operates the feedback loops of the robot system, it
compares the set points with the controlled variables and tries to correct
deviation. Any problems are reported back to the executive and planner and
are used for corrective actions if necessary.

In the further discussion of this paper only the sensor system will
considered.

4 The Sensor System

A sensor system of the Karlsruhe autonomous mobile robot consists of
various sensors which are interconnected by a hierarchical control concept.
The sensors furnish the planning and supervision modules with information
about the status of the robot world. For each of the three major tasks of the

vehicle, the navigation, docking and assembly an own sensor system is
provided.

The sensoric has the following assignments:

- locating workpieces in storage

- supervising the vehicle navigation

- controlling the docking maneuver

- identifying the workpieces and their location and
orientation on the assembly table

- supervising the assembly

- inspecting the completed assembly

For the navigation of the autonomous vehicle, a multisensor system is
necessary. A distinction is made between vehicle based internal and external
sensors and world based sensors. Internal sensors are incremental decoders
in the drive wheels, a compass, inclinometer, etc. External sensors are TV
cameras, range finders, approach and contact sensors, etc. World based
sensor systems use sonic, infrared, laser or radiotelemetris principles. For
the navigation various approches may be used:

- deadreckoning

- navigation under the direction of a compass

- the use of world based sensor systems

- driving under the guidance of floor markers and vehicle based external
sensors

- navigation by vehicle based external sensors, such as a camera or a laser
range finder

- the use of a combination of navigation principles

A vehicle driving in an obstacle free environment may use any of the first
four principles. In case obstacles are entering or leaving the vehicle’s path
or when it is possible that the robot may veer off the course, vehicle based
external sensors must be used. For example, the vehicle must constantly
monitor the path with a camera system. Most advanced autonomous vehicles
use a combination of several approaches systems to react to unforeseeable
events. Recognition is done by extracting specific features from the picture
of the scenario and comparing these with a sensor hypotheses obtained from
a world model. For scenes with many and complex objects the support of an
expert system is needed for the sensor evaluation.

The docking maneuver will be supported by optical, magnetical or
mechanical proximity sensors. Thereby, for coarse positioning a vision
system may be used and for fine positioning mechanical feelers.

Recognition of parts for assembly will be done with a 2D vision system which
also determines the position and orientation of the object. For the
supervision of the assembly process a 3D vision system is required.
Operations such as parts mating, fastening and aligning require
force/torque, approach and touch sensors. The most important sensor is the
vision system; it is connected with the other sensors to a multisensor
module to supervise a complex operation such as an assembly.

A multisensor system may be designed according to the following concepts:

- a combination of various types of sensors

- the use of the same type of sensors at various locations

- the use of one sensor for the acquisition of various parameters
- the use of one sensor for interpreting moving scenes

The first two sensor principles are task dependent and must be carefully
designed for the specific application. The last two sensor principles are
difficult to implement. In all cases the capacity of the sensor channel and
the picture evaluation algorithms must be carefully designed. For example, if'
a sonic sensor is used in conjunction with a laser scanner, the signals of
both sensors have to be combined to one channel parameters.

5 Sensor Data Processing

In a complex work environment it usually is necessary to employ several
sensors to understand an event. The KAMRO system will employ the
hierarchical sensor system architecture shown in Fig. 5 (2). There are 3 data
processing levels in this schema. They are:

Basic sensor data processing level
Sensor data evaluation level
Strategic sensor planning level

10

On the sensor data processing level the raw sensor data is evaluated. The
algorithms are basically of procedural nature and the knowledge is
contained in a well structure form. As an example a vision system will have
algorithms to determine the identity, location and orientation of a
workpiece. The interaction with the robot on this level is in realtime .

On the sensor data evaluation level for each sensor a matching of the
preprocessed data with a sensor hypothesis is done. The hypotheses for the
individual sensors are obtained from the world model where they are
stored as logical sensor information. It may only be necessary to supply to
the matching unit a subset of the available sensor information. On the basis
of the hypothesis and the measured data the matching is done. For this
operation tolerances be provided. If information is missing or the
tolerances are too great the system will reject the results and it may try a
new matching operation. In case this attempt still does not rendor any
result, the problem will be sent to the next higher level to reach at a
desicion.

On the strategic sensor planning level the fusion of sensor data from the
lower levels takes place. A comprehensive evaluation of all sensor data is
done with the aid of knowledge stored about each sensor. Thereafter, action
instructions are given to the robot or a new sensor processing strategy is
planned. A blackboard is employed as an information exchange mechanism
between the knowledge bases of the individual sensors. It acts as a short
term memory and uses the preprocessed sensor data of the matching units
as input. This data is evaluated by independent knowledge processing units.
The sequence of the knowledge processing is determined by a problem
specific control strategy.

The structure of the hierarchical sensor evaluation system is so complex
that it must be supervised by an independent control and communication
module. It is based on an object oriented control schema. The data exchange
between the objects is done via messages. The various modules of the sensor
evaluation system can be tied together for solving a specific problem. The
data manipulation within the modules is done locally. Thus, changes in one
component do not effect other modules.

11

6 Description of the Sensor Systems

KAMRO has three independent sensor systems, one for the navigation, one
for docking and one for the assembly. The control of the sensor operation is
done via the blackboard architecture described in the previous section. In
general, the sensor systems operate independently. However, in some cases
communication between the individual sensor systems is necessary. In the
following sections the sensor systems are described.

6.1 The Sensors for Navigation

The robot obtains from the planner a route map in which the path to be
travelled is defined. In principle the navigation can be done with the help of
resolvers located in the omnidirectional wheels. However, with this method
travel can only be done in a deadreckoning mode and the vehicle would have
to reorient itself constantly with the help of external markers to correct
deviation from the defined path.

KAMRO will be equipped with various sensors to help guiding the vehicle
along its path. There will be an interface to the world model to constantly
update the position of the vehicle. The camera system used tries to
understand the environment from sequences of images. In addition a laser
triangulation sensor is employed to measure the exact distance of an object.
For observing the close proximity of walls and other obstacles an array of
sonic sensors is located in a belt fashion about the vehicle. Every wheel of
the drive system is equipped with a resolver to control travel strategies of
the vehicle. In the following the sensors are explained in more detail.

1 The camera system

The camera system is being designed to interprete the path of the robot
from sequences of images taken during the travel. There will be a total of 4
cameras installed, they will be working together as two sets. Each set is
capable of processing stereoscopic images of the robot world. An attempt
will be made to determine the position of the robot in reference to known

12

objects. For this reason, it is necessary to communicate with the world
model.

For the teach-in phase the robot will be sent through the various routes it
can take, thereby, features of objetcs marking the path will be extracted.
The features are entered into the world map. During navigation the system
is determining its location in reference to the tought features of the objects.
It will be possible to cross-check the travelled path with information from
the resolvers in the wheels.

2 The triangulation laser sensor

The laser sensor aids the camera system in case the exact distance of an
object has to be known. The deflection of the laser beam is programmable.
Thus, it is possible to direct the beam on a specific object and to scan its
surface to obtain the topology. The laser scanner will also be used to
supervise the assembly. Its principle is described in section 6.3.

3 Sonic distance sensors

To avoid collision at close distances a belt of commercially available sonic
sensors is installed along the outside walls of the vehicle. It is the task of
these sensors to detect the proximity of walls, doorways and obstacles. The
sensor information may have to be processed in conjunction with the
pictures obtained from the cameras and laser system, entailing a sensor
fusion. In case obstacles are encountered it is necessary to identify them and
to plan a collision avoidance maneuver. For this reason there will be a
communication link to a collision avoidance and error recovery module.

4 The resolver for the drive wheels

Since the vehicle has an omnidirectional drive system it must be possible to
monitor the rotation of every wheel and to control their rotational speed
and direction. The wheels are driven by brushless servomotors having three
phase stator windings and an armature equipped with permanent magnets.
A resolver is fastened to the motor to decode the rotation. The construction
of the resolver is similar to that of a motor, Fig. 6. It has a rotor winding and
two stator windings. The latter are located at an angular displacement of

13

900 to each other and pick up the rotating magnetic field of the armature.
The sine and cosine functions generated by the two armature windings are
used for determining the rotational angle. With the help of a special
electronic module foreward and reverse signals are produced and sent with
a frequency of 512 pulses per revolution to the drive motors. The control
strategy for the 4 drive motors is determined by a special software module
which communicates with the world model.

6.2 The Sensors _for Docking

Various types of sensor principles may be employed to calibrate the docking
position. E.g. a tactile sensor in the gripper of both robot arms can be used
to detect with the help of a pin the known position of two holes in the
worktable which are adequately (located by a camera) spaced apart. The
angular position of the joint angles of the arms, together with the arm
dimensions, are used to calculate the location and orientation of the mobile
robot in reference to the work table. Beside this contact measuring
principle there exist three non-contact techniques. Inductive sensors may
be used to search and to register the edge of a thin metal sheet, or a
capacitive sensor measures capacity changes if there is a transition between
materials with different dielectric parameters. Finally, optical sensors are
capable of measuring the exact position and orientation of the mobile robot
relative to a work area (e.g. assembly desk). Both, active and passive
techniques are used. The last kind of docking sensor is installed in the
KAMRO.

The active approach integrates several laser diodes (LEDs) which are
arranged in an orthogonal fashion in reference to the assembly table. These
diodes form an orthogonal coordinate system. A PSD - sensor is integrated
into the gripper. In a first step this sensor is brought into an parallel
position relative to the x, y - plane indicated by the three diodes. This can
be performed by vertical gripper movements. In case the z-coordinate of the
working surface is not known a fourth diod at a kown relative distance from
the x y -plan can be employed to obtain this dimension. The z position of the
tables can also be obtained with the wrist sensor of the effector. By this

14

method the effector is moved slowly towards the table and upon though the
z coordinate is calculated from the joint angles and dimensiones of the arm.

The passive approach uses the triangulation principle. A pulsed laser diode
is integrated into the gripper and is used to scan several discrete points of
the working area. An CCD-camera which is installed in the wrist (see next
section) receives the position of the reflected laser beam. Thereafter, the
distance of these scanned points is calculated. By this calculation the
position and the orientation of the working area can be determined. This
measuring methods can be improved if the scanned region is marked by a
dedicated feature (e.g. a cross). In this case, the scanning region can be
found very quickly.

6.3 The Sensors for Assembly

Various sensors are used for supervising the assembly. They are a
multifunction laser scanner, two wrist cameras, a force/torque sensor, a
touch sensor, a sensor for the gripping forces and an approach sensor.

1 Multi-function laser scanner

The measurement of exact distances is done by triangulation. Figure 7
shows the block diagram of the system. This system is entirely computer-
driven (two M68020 processors). The two galvanometer mirrors can be
rotated to generate any desired (e.g. tracking) field of view and scanning
frequency (tracking). This capability of random scanning is important, e.g.

for the detection of operational features of a workpiece (e.g. curvature, hole
position).

The position of the reflected beam is measured (difference of currents) by a
two dimensional position sensitive diode (PSD). It is used to calculate the
distance. A special feature of this sensor is that it also can measure the
intensity of the reflected light of any point scanned (normalized addition of
currents). This features will be used to merge information on distance and
intensity without a correspondence problem.

15

An additional CCD-camera controls the global field of view of the laser
scanner by locating regions of interest. When such a region has been
pinpointed the laser scanner can be automatically turned into this direction
by the robot to take measurements. The pictures taken with this camera are
used to separate background objects and shadows.

This combined laser scanner needs about 10sec for processing 2562
scanning points (distance and intensity). However, the raw data have to be
corrected mainly for background lights, PSD non linearity pincushion and
parallel distortion. The last two types of distortions are generated by the
transformation of the equidistant spherical scanning lines into non-
equidistant differences in cartesian coordinates.

The essential objective of this sensor system is the automatic fusion of
distance and intensity data. The fusion is done for various operators obtained
from the feature extraction. For example, edges are easily detected from
intensity images; whereas from distance measurements they are hardly
detectable because the reflected laser beam is split by geometric edges.

The final classification of an object is done from distance, PSD-intensity and
CCD camera intensity data. Fig. 8 shows the steps to be taken to obtain
corrected measurement data and to identify an image. In the following the
steps are described in more details.

step 1: Simultaneous generation of the distance and laser intensity image
by the PSD. Thereafter, extraction of the background shadows from
the laser intensity image.

step 2: Extraction of the object contours from the laser intensity image.
These contours stem from geometric object features (physical
edges) or changes of the reflectivity of the object.

step 3: Extraction of the geometric contoures; resulting in a segmentation
of the distance image.

16

step 4: Evaluation of surface features (e.g. curvatures) from the areas
which were determined in step 3 (geometrical segmentation).

step 5: Separation of the volumetric and reflective contours in the laser
intensity image.

step 6: Tracking of the shadow regions by the use of the laser beam and
exposure of these marked regions to the CCD-camera. This camera
has a field of view which is different from the scanning field of the
laser scanner. Therefore, it is possible to separate objects which
are not visible in the two laser images.

step 7: Recognition of objects in the background which are concealed by
front objects. The latter are only visible to the laser scanner.

2 Two wrist cameras

The global two dimensional view of the assembly is obtained by the camera
which is fixed above the workstation. A three dimensional view of the
workpieces to be mated and the details of three dimensional operational
features of the parts (before and during the assembly) cannot be generated
by the "overhead" camera. These tasks are performed by two small CCD-
cameras which are mounted to the wrists of the two KAMRO grippers. The
operating range of these two cameras is about 10 cm to 50 cm without
zooming. Within this range they can obtain accurate distance information
and no laser scanner is needed.

The tasks of these cameras are as following

a) Recognition of the operational features of an object and determination
of the objects position and orientation. The features extraction is
performed with the help of 3-D CAD models. The geometric models
are referenced automatically in several steps to evaluate the image
obtained by the camera.

The final evaluation of the object features is done by rules. These rules
control the motion of one wrist camera (e.g. top view, side view or

17

front view) in order to find the exact feature parameters. All rules are
installed in a so called visibility tree [3].

b) The designation of the hand to be used for the manipulation (left or
right gripper) and the control of the work is done by a rule based
module.

For the control of the manipulation a measurement tree is used in
analogy to the visibility tree mentioned above [4]. The tree defines the
kind of measurement to be performed by a camera for every elementary
assembly operation (e.g. insert, turn). If one hand is selected to perform
a joining operation then the camera of the other hand is used for the
manipulation control.

3 Force/torque sensor

This type of sensor is needed to control handling of the object, to supervise
assembly, and to protect the robot from overload. It is installed in the wrist
of the effector and should be able to render accurate and repeatable results
throughout the entire load range of the robot. The sensor itself has to be
protected against possible overload, shock, and vibration. The basic
principle of our sensor is shown in Fig. 9. It is divided into two parts: a
lower ring with four rigid supports and a upper ring with four fastenings
points for the gripper. Careful attention must be paid to a good design so
that the measurement signals are highly linear with the applied force. The

analog strain gauge signals are converted to force and torque information via
matrix multiplication.

4 Touch sensor

The dedicated type of a touch sensor to be used is shown in Fig. 10, [5] This
sensor is integrated into the gripper finger. The sensor pad (30 mm in
diameter) is formed from a silicone rubber sheet that is tensioned across a
flat plexiglas surface by means of a retaining ring. Light that is directed onto
the plaxiglas from small bulbs is totally reflected at the inside of the flat
plexiglas surfaces. When the rubber is pressed into intimate contact with
the plaxiglas, by the force exerted on the workpiece, total internal

18

reflection is prevented and the light then leaving the plexiglas is projected
by a lens onto a CCD photodetector array (256 x 256). A video image of the
tactile image is then available for processing and analysis using procedures
of image analysis.

If necessary the pad can be rotated via a drive mechanism to reposition the
object held in the hand.

5 Sensor for gripping forces
This sensor monitors the gripping forces the fingers apply to the object to
be handled. A conventional strain gauge measurening arrangement is used.

6 Ultrasonic sensor

This sensor is needed to monitor the approach of the gripper to the object.
For economical reason it is necessary that the hand moves toward the object
very quickly, and as soon as it is close to the object the motion has to be
slowed down in order to avoid collision and to assure a save gripping
position. Conventional ultrasonic sensors are used. To be able to measure
close distances the control circuit provides a fast switching time between
emission and reception of the signal.

Acknowledgement

This work was carried out at the Institute of Realtime Computer Systems
and Robotics (Prof.-Dr.-Ing. U. Rembold and Prof. Dr.-Ing. R. Dillmann) of
the University of Karlsruhe, and at the research group "Technical Expert
Systems and Robotics" (Prof. Dr.-Ing. U. Rembold and Prof. Dr. P. Levi) of the
Forschungszentrum Informatik, Karlsruhe. The work was supported by the
Deutsche Forschungsgemeinschaft.

References
1. Rembold, U.: "The Karlsruhe Autonomous Assembly Robot", IEEE

International Conference on Robotics and Automation, April 24-29,
1988, Philadelphia

19

Raczkowsky, J. and Rembold, U.: "The Multisensory System of the
KAMRO Robot", Nato Workshop on Highly Redundant Sensors in
Robotics, May 16-20, 1988, IL Chiocco, Italy

Majumdar, J.; Levi, P.; Rembold, U.: 3-D Model Based Robot Vision by
Matching Scene Description with Object Model from a CAD-Modeller,
Proc. of the 3rd ICAR, Versailles, October 1987

Majumdar, J.; Levi, P.; Rembold, U.: Use of Control Knowledge Sources
for Elementary Operations of a Two Arm Assembly Robot, proc. of the
IEEE International Workshop on Intelligent Robots and Systems,
Tokyo, Oct. 31 - Nov. 02, 1988

Technical Report No. TR6, ESPRIT Project 278 "Tactile Sensing for
Integrated Sensor-Based Robot Systems", December 1987

work station

Fig. 1: The Karlsruhe autonomous mobile assembly robot KAMRO

Storage I Conveyor belt

000
)

V00002

Workstation
* | ‘Workstation 2

Flexible assembly cell

application of KAMRO

21

Components of an autonomous robot

1. Mechanics and drive system
2. Sensor system
internal sensors
external sensors
3. Planner and navigator
planner
navigator
expert system
knowledge base
meta knowledge
4. World model
static component
dynamic component
5. Knowledge acquisition and world modeling
6. The computer system

Fig. 3: Components of an autonomous robot

Assembly
Status of command
the world

(from the world .
model or from Planning
SEnsors)
\§ J
Action plans ‘ b Reports
4)
Executive
J
Supervision commands b & | Move commands
Status
and Status
report
Supervision Effector control
Data from special
sensors for closed
loop
Commands Y Measured data Commands ‘ Status
(Sensors) (Effectors)
Robot work cell

Fig. 4: The overview of the structure of the third generation robot system KAMRO

22

4 ~—]
) Control Structure -
Commands
KS o E—
Execution
Worldmodel Unit
il
Domain Blackboard)<_
geometrical (m ———p
Control Status
and and
\—-——-———) / \ 4 Communication Report
View View
1). K]
KSN ><\
\j
Matching Matching ”
Unit Unit
1 N
I
Information Information
Unit Unit
1 N
\ 3
- MSN

Fig.5: The Basic structure of the hierarchical sensor evaluation system
L Sensor data processing level
. Sensor data evaluation level
. Strategic sensor planning level

Fig. 6: Arrangement of the stator and rotor windings of the resolver

23

Fieid of view

Fieid of view of the camera

of the laser

Field of view
of the PSD

Hor. mirror

VA

Laser source CCD camera \\\ I -//'

PSD detector

Fig. 7. Schematical structure of the friangulation sccnner

Shadow

Contours >/Ijascr

Reflectivity contours

Lash

Intensity
image

Background

Boundaries of
the shades

Shadow
area

CCDh
intensity
image

Fig. 8: Measuring principle of the multifunction laser scanner

ol LA Ejl_ﬂbl

Dennungsmenstreiten,
doppeiseitig

Fig.9: Design of a force measuring box

Gripper finger

Lens CCD
Lamps

Silicone |/

Vi)
Collar / &
7\

Plexiglas Aperatures Ball race

|~ Force sensor

| N |

Fig. 10: Tactile sensor design

ol La N ZJI_E})I

ROBOT TACTILE PERCEPTION

G. ButtazzoT, A. Bicchi¥, P. Dariof

Centro "E. Piaggio”,
Faculty of Engineering, University of Pisa,
Via Diotisalvi,2 56100 Pisa
Ttaly

Abstract

In this paper we discuss some fundamental issues related to the development of an
artificial tactile sensing system intended for investigating robotic active touch. The analysis of
some psychological and psychophysical aspects of human tactile perception, and a system
design approach aimed at effectively integrating the motor and sensory functions of the robot
system, suggested to conceptually organize tactile exploratory tasks into a hierarchical
structure of sensory-motor acts. Our approach is to decompose complex tactile operations into
elementary sensory-motor acts, that we call "TACTILE SUBROUTINES", each aimed at the
extraction of a specific feature from the explored object. This approach simplifies robot
control and allows a modular implementation of the system architecture: each function can be
developed independently and new capabilities can easily be added to the system. All tactile
exploratory procedures are selected and coordinated by a high-level controller, which also
operates the integration of tactile data coming from sensors and from lower levels of the
hierarchy.

Some experimental results will be presented demonstrating the feasibility and usefulness of
tactile sensing in exploratory operations. A recently developed sensor will be briefly
presented, which exploits force/torque information measured directly at the tip of the robot
end-effector. This sensor is able to detect, besides the position of the contact point, the normal
and tangential components of the contact force. Methods for characterizing the surface of
manipulated objects, according to their hardness, texture and friction properties will also be
discussed.

+ Scuola Superiore S. Anna, Pisa, Italy
t Dept. of Mech. Eng. - DIEM, University of Bologna, Italy

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Soringer-Verlag Berlin Heidelhere 1001

26

1. Introduction

Tactile perception is a fundamental capability for a robot that has to execute manipulative
and explorative tasks. The interactive behavior of touch allows humans to extract several
features from the external world, that cannot be detected by vision or other senses. Examples
of such features are: hardness, elasticity, roughness, texture, temperature, thermal
conductivity and local geometrical characteristics, such as holes, edges, cavities, sharp
regions, etc.

It is important to point out that extracting such features from an object is not a capability of
a specific sensor, but it is rather a capability of the whole system. Performing explorative
tasks involves the execution of sensory-motor procedures, in which tactile information is used
to sense and drive the movements of the fingers. Touch is intrinsically active and involves
dynamic sensing, where movements are utilized for augmenting and driving sensory
information. The coordination of sensory activity and motor activity is not just a summation
of capabilities, but it considerably improves robot performance, by increasing the perceptual
skill of the system and extending the set of characteristics that can be extracted from the
external world.

In passive perception (mostly followed in vision), sensors and actuators are physically
separated: sensors are fixed devices which statically observe the world and send information
to a central controller at a very low sampling rate; once sensory data are analyzed, a motor
action for the manipulator is planned. In this approach, data processing and motion planning
are two distinct processes, which do not overlap in time. Motion planning is based on sensory
information, but once the trajectory of the arm has been calculated it cannot be changed.

In active perception, especially in tactile perception, sensing and control are tied together.
Sensors are often mounted on actuators and are used by the system to probe the environment
and precisely control the movements. Trajectories are computed in real time using sensor-
based control techniques.

Assigning perceptual capabilities to exploratory acts rather than to static sensors is a novel
concept in robotics, that has not received much attention among scientists so far, unless at the
level of speculation. Recently, however, this issue has been considered more seriously, and
some implementation has been attempted [1][2][3].

Our goal is to build an autonomous tactile robot system capable to perform active
exploration and fine manipulation of real objects, for their recognition.

Based on the analysis of some aspects of human tactile perception, our approach is to
decompose complex tactile exploratory procedures into a sequence of elementary sensory-
motor acts, that we call "TACTILE SUBROUTINES", each aimed at the extraction of a
specific object feature [4].

27

In humans, it is possible to identify a number of typical tactile procedures that are
performed with the fingers every time we want to detect some particular feature from an
object. For example, if we are interested to know the hardness of a material, we repeatedly
press our fingertip against the object surféce, paying attention to the force we exert and to the
object deformation. If we are interested in object texture, we gently slide the fingertip along
the object surface and we pay attention to the tactile sensation coming from our epidermal
sensors. As another example, if we want to reconstruct the shape of an object, we follow the
object contour, keeping in mind the trajectories of the contact points achieved by the
fingertip.

In this context, we define a "TACTILE SUBROUTINE" as a motor action executed on a
sensor, guided by the tactile information coming from the sensor itself, according to a control
strategy which depends on the sensor and on the feature that has to be extracted.

This approach considerably simplifies robot control and allows a modular implementation
of the system architecture: we can develop one tactile subroutine at a time and freeze it in the
system as "innate behavior". To add capabilities to the robot we simply insert new subroutines
in the system. All tactile subroutines are selected and coordinated by a high-level controller,
which also operates data integration and directs the global exploratory strategy.

2. System description

The tactile system we developed for investigating tactile perception consists of the
following components:

- a PUMA 560 robot arm, controlled by its dedicated microprocessor (UNIMATE) and
programmed in VAL II;

- a miniaturized force/torque (F/T) fingertip sensor, working as a sensitive probe for
tactile exploratory tasks;

- a piezoelectric polymer (PVF2) sensor, implementing a sort of artificial finger nail,
intended to rub rough surfaces for texture detection.

Other components of the system are two PC’s, utilized for sensor preprocessing, and a
DEC micro VAX II, used as a system supervisor for tactile data integration and high level
control.

The complete architecture of the system is depicted in Figure 1. The fingertip F/T sensor is
mounted on the PUMA wrist and the nail-sensor is attached to the fingertip. Each sensor is

28

connected to a PC. PC1 is intended to process the information coming from the F/T sensor
and to control the execution of tactile exploratory procedures; PC2 is dedicated to the nail

ETHERNET

VL LR F ek CTale “2F o L T 2 AR = U HailF AL U P79 s, 77 SITLT LT LA AL T Vo V7T s

JVAX PVAX
HVAX I 2000 2000

I
PC1 ' PCz

UNIMATE == Tocer PREP.

PUMA @

\— J

Fig 1. The system architecture.

sensor and works as a slave in the communication with PC1. It continuously read the signal
produced by the nail during the sliding movements and computes a number of parameters
usefulytoycharacterizeyroughnesssy Thestwo PC’s communicate via serial line. PC1 is also

29

connected to the PUMA processor through a 16 bit input/output parallel port for managing
sensor-based movements.

An additional parallel interconnection exists between fingertip sensor and PUMA
processor, which implements a sort of reflex pulse for stopping the PUMA in case of
dangerous situations (overloads on the sensors) that could damage the system.

2.1 The F/T sensor

This sensor has been designed to be easily incorporated as a sensitive fingertip in an
articulated robot hand, but in the system presented in this paper it is used as a tactile probe for
exploratory tasks and it is mounted on a single rigid "finger". This finger is connected to the
PUMA wrist through a compliant adaptor: in fact, a certain amount of flexibility is mandatory
for controlling interaction forces between robot and environment. A schematic description of
the sensor is shown in Figure 2.

FIT

FINGERTIP
sensor

‘!3_ PC

IR

O - A ~ A/D

Fig. 2. The fingertip force/torque sensor with its conditioning units.

The device has the purpose of measuring the three orthogonal components of the resultant
force and the three orthogonal components of the resultant torque applied to its mechanical
structure. The measurement principle is the mechano-electric transduction of the elastic strain
of a monolithic cylinder beam to which the load is applied. The transduction is carried out by
6 strain-gages only. B

The top of the cylindrical structure is threaded so that different types of fingertips can

30

easily be adapted to the sensor. When an external force is exerted on the fingertip, the
mechanical structure of the sensor deflects, causing the strain-gage response.

The electric resistance variation of each strain gage, due to the strains imposed to the
cylinder by the load, is separately measured. This information can be processed in the form of
six orthogonal components of the applied force/moment by solving the set of linear equations
which model the elastic compliance of the structure; the equations can be obtained by using
beam theory or by calibrating the cell experimentally. Conventional algorithms for linear
system solution, e.g. Gaussian elimination, are adequate for this purpose. However, the
peculiar arrangement of the strain gages on the cylindrical surface of the sensor allows a more
time-efficient algorithm, almost decoupling the cell readings [5].

The small size of the sensor, the low cost, along with its simple structure, make it attracting
for being integrated in the mechanical structure of robot hands or robot end-effectors for fine
manipulation.

Some performance figures experimentally obtained from a prototype sensor, using a non-
engineered technology, are listed in table 1.

Table 1

Active cell size: 10x 10 x 16 mm3
Force range: 0.1t0o30N
Torque range: 0.1 to 30 Ncm

Crosstalk (max): 4% FSO
Precision (repeat.): 2% FSO

The thickness of the cylindrical beam is a free parameter which determines the loading
range of the sensor. Temperature variations can be compensated by using an extra strain-gage,
bonded to the stiff base of the sensor structure.

Resistance variation of each strain-gage is measured by an individual Wheatstone bridge
(module ¢ in Fig. 2); the 6 output signals are then amplified (A), filtered out by a low pass
filter (~), multiplexed and finally converted into digital form (A/D). The F/T sensor is
connected to a PC through a Data Acquisition Card, which performs multiplexer addressing
and analog to digital conversion.

2.2 The PVF2 sensor

A piezoelectric sensor, made by PVF2 polymer, is utilized as a dynamic sensor for
implementing a sort of artificial fingertip nail, intended to rub rough surfaces for texture

31

detection [2]. The nail structure consists of a properly shaped plastic sheet, adapted to the
upper surface of the fingertip, from which it protrudes for about 5 mm (Figure 3).

NAIL

PC

CHAR.

AMP.

1383

A/D

Fig. 3. The PVF?2 nail sensor with its conditioning units.

This arrangement allows to add compliance to the sensor and to increase sensor sensitivity
to mechanical vibrations. The PVF2 film (25 micron thick), used in a bilaminate
conﬁguratibn, is located between nail and fingertip, bonded to the inner side of the nail.

When the nail is slid along a rough surface, the nail structure vibrates, producing strain in
the PVF2 sensor, which generates an amount of charge proportional to the strain. This charge
is amplified by a charge amplifier and the output voltage signal is digitized by an A/D
converter and processed by another PC.

The upper frequency limit of the digitized signal, established by the sampling rate of the
system, is almost 5 KHz, and it proved to be sufficient for all practical surface explorations.

As for all piezoelectric sensors, the lower frequency limit of the nail signal is not zero, but
a few hundreds mHz. This is due to the finite time constant of the piezoelectric sensor, that
derives from its finite internal resistance. In this particular case, such intrinsic limitation turns
out to be a positive feature of the sensor: in fact, as a consequence of a non-zero lower
frequency limit, the nail cannot respond to very slow mechanical deflections. Therefore the
high frequency components of the signal due to the roughness of the explored surface are
detected, while the low frequency "noise” causéd by the variation of the contact force during
the sliding movement is filtered out.

An approach involving dynamic tactile sensing for texture detection using a PVF2 sensor
has also been reported by Cutkosky [6].

32

3. Functional architecture

Based on the functions that the robot system is intended to implement, the software
architecture has been organized in three control levels, as illustrated in Figure 4.

bali i
r:grﬂe‘sgnltglion hc"?,?,m'gxgi
t
RECOGNIZOR l
@ 1 TACTILE
INTEGRATOR PLANNER
HIGH 4. .. cc e
LEVEL
SAM, S U By

. .,
' m (SuB
MIDDLE SA 0

LEVEL
SPU MCU

SIM| [SIM]nu |
LOW
LEVEL .

4
SEN SEN MOTOR
ROBOT

Fig. 4. Hierarchical functional architecture of the system

Level 1

The lowest level of this hierarchy includes all VAL II programming and all assembler
routines for sensor acquisition, processor communication and actuator driving. This level is
designed to execute simple commands sent by the middle-level controller. Such commands

33

may include position commands in joint space or in cartesian space, or force/torque
commands.

The Sensor Interface Module (SIM) realizes the interface between sensor and computer,
providing analog to digital conversion and data acquisition. The Sensor Processing Unit
(SPU) performs a first stage of processing and provides the Motor Control Unit (MCU) with
feedback signals for motor control. According to the middle-level commands and to the
feedback signals, the MCU computes the proper output data, which are converted in analog
voltages and then sent to the Driver Unit for driving the motors. VAL II programs are
included in this module.

Level 2

The middle level is the level in which elementary sensory-motor operations (tactile
subroutines) are frozen in separated modules (SUBj) as behavior of the system. Each
subroutine has the role of managing the execution of an exploratory procedure aimed at the
extraction of an object feature. The exploratory strategy depends on the feature that has to be
extracted and on the sensor used in the exploration.

A dedicated Signal Analyzer Module (SAM), one for each subroutine, performs a
compression of sensory data coming from the lower level, by computing some significant and
synthetic parameters utilized as feedback signals for the middle-level controller. The same
parameters are also combined in a next stage for computing a quantity representative for the
feature extracted by the tactile subroutine. All outputs produced at this level are sent to the
high level for further processing.

Level 3

The purpose of the high level in this architecture is to plan an exploratory strategy
according to the input task and to attempt a recognition or a classification of the objects
explored by the robot system. All data and parameters computed by the middle level converge
in a module, called Integrator, whose task is to merge all sparse sensory data into few
synthetic quantities compatible with the information stored in the Data Base.

The real recognition process is performed by the Recognizor module, which compares the
parameters extracted by the Integrator with sample parameters stored in the Data Base. This
sample parameters are extracted from a number of sample objects in a previous learning
phase, carried out by using the same procedure.

In this way, the system learns how to build its own model of the world, since only
internally processed information is utilized to construct and update the Data Base. In this way,
systematic errors and imperfect calibration do not affect the system performace significantly,

34

and the recognition process comes out more robust.

The Tactile Planner selects the next tactile subroutine for optimizing the recognition
process, according to the input task and to the local features recognized during tactile
exploration (given as feedback information in the high-level controller).

4. Experimental results

Three tactile subroutines have been implemented on this system, HARDNESS, TEXTURE
and FRICTION, aimed at the extraction of hardness, texture and friction coefficients
respectively.

In all experiments the objects were fixed on the table, located in a position known a priori
by the robot, since no vision system was used to identify absolute positions in the robot work-
space. All tactile subroutines were coordinated by PC1.

4.1 Hardness procedure

Starting from an initial configuration, the arm moves slowly toward the object, in order to
press the object surface with the sensor tip. When the contact force detected by the F/T sensor
exceeds a given threshold, say F1, the PUMA stops its motion and sends the coordinates of its
wrist to PC1. After the transmition is completed, the PUMA slowly increases the contact
force on the object (as allowed by the compliance of the wrist adaptor) and when the force on
the F/T sensor reaches a second threshold F2, the PUMA stops again and sends the new wrist
location to PC1. :

Based on the information received from the PUMA and on the elastic properties of the
compliant wrist adaptor, PC1 determines the position displacement D of the F/T sensor during
the pushing procedure and computes the following ratio:

F2 — FI
H =
D

In the case of soft materials, the displacemet D caused by object deformation will be
relatively large, while for hard objects D will result much smaller. Thus, the parameter H
represents a rough estimate of object hardness.

Figure 5 shows the results obtained by executing the procedure on several sample objects,
having the same shape (parallelepipedal), the same thickness (10 mm), and modulus of
elasticity comprised between 105 and 109 Pa.

35

=
i

)

|
T———————
e

=i [o]

x|

|

e g ——— E

5 B DG T

Fig.k 5. Statistical evaluation of the H parameter,
executing the procedure en five sample objects.

Repeatibility was also tested by running the procedure several times on each object: the

standard deviation computed over 20 tests on the same object did not exceed the value of 4%
F.S.O.

4.2 Texture procedure

This tactile subroutine was executed by rubbing the PVF2 nail sensor (located at the tip of
the F/T sensor) on the object surface with a predetermined force. Since fine texture details are
better perceived by exploring planar surfaces, we used flat objects only. Moreover, in order to
symplify signal processing and easily describe roughness by few sinthetic parameters, we
decided to test the system by using "wrinkly patterns”, prepared by disposing in parallel thin
wires on a smooth board. We used spacing between wires and diameter of the wires as
parameters for characterizing roughness. Wrinkly patterns have also been used by
psychologists to test the human tactile system [7][8]; therefore they also represent a good
method for comparing the human perceptual system with an artificial one.

The procedure has been caried out by rubbing the nail sensor on the wrinkly patterns along
a straight line, for a length of 35 cm, at the speed of 125 mmy/s. The force exerted on the
surface was set at 3 N and controlled by PC1, while the nail signal was sampled by PC2 at the
frequency of 3.2 KHz. The aim of the experiments was to test the ability of the system in
discriminating spacing and thickness of the wrinkles.

36

Signal processing following the exploration of each pattern included a filtering phase, a
thresholding phase and an evaluation phase, where two parameters were computed on the
signal: the distance d between spikes and the amplitude A of the spikes. In particular, if n is
the number of samples acquired between two spikes, v is the velocity of the exploration and £
the sampling frequency, spacing is given by: d = nv/£.

Results of these experiments are reported in Figure 6: Figure 6a shows the parameter d vs.
the real spacing of the wrinkles, while Figure 6b shows the parameter A vs. wrinkle thickness.

a } - -, Y - - - Y - > ,
5 10 15 20 25 30 a0 50 d (mm)
b 'ML________’
02 05 0.8 1.2 15 A (mm)

Fig. 6. Statistical evaluation the Texture Procedure.
Fig. 6a: parameter A related to wrinkle amplitude
Fig. 6b: parameter d realted to wrinkle spacing.

The system exhibited a precision of about 0.2 mm in perceiving distancies, but its tactile
acuity (i.e. the smallest distance at which the system is able to discriminate two wrinkles as
distinct) resulted of 0.5 mm. This greater value can be explained by considering that a spike
produced by a wrinkle fades out in about 3-4 ms, depending on the elasticity of the nail, and
at the speed of 125 mmy/s the nail advances of about 0.5 mm.

The standard deviation calculated for the parameter A was much greater than the standard
deviation calculated for d. The main factor affecting the value of A is the mechanical
vibration of the robot arm during the exploratory procedure. However, the system was able to
discriminate five wrinkles (0.2, 0.5, 0.8, 1.2 and 1.5 mm thick) with an error smaller than
15%, and four wrinkles (0.2, 0.6, 1, 1.5 mm thick) with an error smaller than 2%.

4.3 Friction procedure

This procedure involves automatically testing the friction properties of an object, in order
to estimate its static and dynamic friction coefficients. This information is very useful for
programming operations like grasping or manipulation of objects, which often rely on the

37

forces the friction is able to withstand; beyond that, it can be used in order to characterize
different objects, contributing to their recognition.

The way the friction coefficient is estimated is inspired by the observation of human
behavior: we usually proceed by touching the object with a finger, pressing on it moderately
and then exerting on the finger a force tending to slide it over the object surface; this force is
increased until the fingertip actually slips, after which the operation is over.

To replicate such an operation, an automatic system needs the capability of sensing both
the normal and tangential forces exerted at the contact point. This feature, which is not
possessed by most conventional tactile sensors, is realized by the so-called Intrinsic Tactile
(IT) sensor, as described by Bicchi and Dario [5]. An IT sensor consists basically of a
force/torque sensor integrated within the fingertip surface, so that all the components of the
force system generated by contact pressures are measured. If the geometrical description of
the fingertip suiface is known, it is possible to apply simple algorithms (as the original one
proposed by Salisbury [9], or a more precise one described in Bicchi [10]) so as to obtain the
following information:

a) the location of the contact point on the fingertip surface;

b) the intensity and direction of the contact force, and hence

¢) the values of the normal and tangential (friction) components of the contact force.

Using the miniaturized F/T sensor mounted on the Puma arm and a spherical fingertip of
radius 10 mm, fixed in turn to the F/T sensor, we performed several experiments aimed at
automatically measuring the coefficients of static (1g) and dynamic (ud) friction of different
objects in contact with the fingertip. The fingertip was initially brought to touch the object
surface with a normal force of about 0.5 Kg; then the robot arm started to force it to move in
the tangential direction, increasing this force linearly with time. The values of normal and
tangential components of contact force, detected by the IT sensor during this phase and the
following slippage, were stored in a buffer memory. Once arm motion is stopped, data are
elaborated and presented in graphic form as shown in fig.7.

The diagram showed in fig.7 refers to an experiment with a rubber object (with relatively high
friction), and presents the plot of friction ratio Rf (i.e. the ratio between the tangential and the
normal component of contact force) vs. time. Each small square in the plot corresponds to a
value of Rf measured at a sampling rate of 10 Hz. In the diagram of fig.7 two parts can be
easily recognized: in the first part Rf increases almost linearly, until a maximum is reached,
after which the friction ratio drops to a lower value; in the second part Rf is approximately
constant. The interpretation of such plots is straightforward: the friction force increases until
Rf reaches the static friction limit pig, then motion (slip) starts, and, according to the Coulomb
model of friction, the friction ratio drops to pd.

Due to the fact that accidental perturbations of the mechanical system and of the sensor
measurements superimpose random oscillations to the experimental curves, their

38

8. .75

8.3

..

e

815

el

L T
0.8 TP 765 360 160 508 FF A 709 868 989 8 1AR ATIE P16 BT :a";TTn_u'_’

Xx 0.1 sec

Fig. 7. Friction ratio during a sliding movement

interpretation in terms of quantitative estimates of ms and md is not obvious. Repeated
experiments on the same objects resulted in data having a common pattern, but several local
discrepancies. An algorithm for interpreting such data that resulted in fairly repeatable
estimates is the following: the set of measurements is splitted in two parts corresponding to a
tentative slippage instant Tg; the first subset of data is fitted with the best line in least-squares
sense, and the second subset is aproximated with a constant value equal to its average value.
The sum of the averaged squared errors in each data subset is assumed as a measure of
approximation; at varying T, the slippage instant is found as the one minimizing the
approximation error.

The resulting linear approximation is presented in Fig.7 with a superimposed solid line.
The maximum value of friction ratio reached before slippage is assumed as the static friction
coefficient; the average value of the following phase is the exstimated dynamiclfriction
coefficient.

Based on the above technique, an automatic sorting of objects, having different friction
characteristics, has been attempted. Objects belonging to three classes, with low, intermediate
and high friction, were examined in random order by the system and the friction of their
surfaces measured with the above described methods. The objects were then recognized as
belonging to one out of the three classes: the incidence of errors in these tests was virtually
null.

39

5. Conclusions

A sensorized robot system able to perform specific exploratory procedures (tactile
subroutines) on. objects in order to extract information useful for their description, has been
described.

The approach we have proposed is an attempt of replicating in an artificial system some of
the sensory-motor paradigms used by humans in exploratory tasks. Obviously, many
simplifications were introduced to reduce the complexity of control and the amount of
computation on the sensor signals.

In spite of the limitations of the present work and the rather simple structure of the system,
results show the validity of this approach. Studying one finger exploratory strategies based on
the decomposition of complex human tactile perceptual activities in a sequence of elementary
sensory-motor acts, seems to be promising and to encourage further investigation in the field.

Acknowledgements

The authors wish to thank R. Di Leonardo and F. Vivaldi for their help in building the
sensors. This work has been supported by the Scuola Superiore S. Anna of Pisa and the
University of Bologna.

References

[1] Bajcsy, R., "What Can We Learn From One Finger Experiments?"”, in Robotics
Research, Brady and Paul, editors, MIT Press, 1984, pp. 509-527.

[2] Buttazzo, G., P. Dario and R. Bajcsy, "Finger Based Explorations”, in David Casasent,
editor, Intelligent Robots and Computer Vision: Fifth in a Series, pp. 338-345,
Proceedings of SPIE Vol. 726, Cambridge, MA, 1986.

(3] Stansfield, S.A., "Primitives, features, and exploratory procedures: Building a robot
tactile perception system”. Proc. of IEEE Int. Conf. on Robotics and Automation, S.
Francisco, CA, 1986, pp. 1274-1279.

(4

[5]

(6]

(71
(8]

9]

[10]

40

Dario, P. and G. Buttazzo, "An Anthropomorphic Robot Finger for Investigating
Artificial Tactile Perception”, The Int. Journal of Robotics Research, Vol. 6, no. 3,
Fall 1987, MIT Press.

Bicchi, A. and P.Dario, "Intrinsic Tactile Sensing for Artificial Hands"; Robotics
Research, R.Bolles and B.Roth Editors, MIT Press, 1987.

Cutkosky, M.R., "Dynamic tactile sensing", Proceeding of RO.MAN.SY, Udine,
September 1988.

Loomis, J.M., "Tactile pattern perception”, Perception, 10, 5-27, 1981.

Lederman, S.J., "The perception of texture by touch", in Tactual Perception, W. Schiff
and E. Foulke, eds., Cambridge University Press, 1982, pp. 130-167.

Salisbury, J.K., "Interpretation of Contact Geometries from Force Measurements"”;
Robotics Research, M.Brady and R.Paul Editors, MIT Press, 1984.

Bicchi, A., "Methods and Devices for Dextrous Manipulation Sensory Control",
Doctoral Dissertation, University of Bologna (in preparation), 1988.

UNCERTAINTY IN ROBOT SENSING

E. Grant
Acting Director of Research

The Turing Institute
George House
36 North Hanover Street
Glasgow G1 2AD
Scotland
UK

ABSTRACT

This paper deals with sensing uncertainty in a robot world. Sensors typically
provide signals that are both incomplete and ambiguous. Three pieces of research are
described which attempt effective solutions to this common problem but using three
different approaches. The first piece of work uses vision to demonstrate the construction
and integration of a dynamic world model for mobile robot navigation. The second,
provides an adaptive rule-based controller for an inverted pendulum and cart problem and
the third, sensory integration of vision and taction for the purposes object recognition.

The theme for the first piece of work is that the most effective solutions are obtained
when maximising the amount of representational data available. The theme of the second
is that broad qualitative partitioning of a state-space can avoid problems of ambiguity and
noise without performance decrement. Indeed, the use of broad qualitative partitions is
shown to lead to the development of heuristic adaptive controllers for complex dynamic
systems that offer far greater than flexibility than those based on classical methodologies.
The final theme is that machine learning can play a powerful role in the generation of
sensor-based models.

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Springer-Verlag Berlin Heidelberg 1991

42

INTRODUCTION

Uncertainty exists in numerous forms in present robot systems because robots must
operate in the real world. In order to operate in this world, robots must cope with the
inherent uncertainty that is associated with the modelling, planning and motion of
manipulators and parts. A review of the literature shows that two schools of thought exist
regarding the solution to reducing uncertainty. Although both are knowledge-based, it is
difficult to imagine how the first could reduce the effects of uncertainty since it requires
structuring the robot world more than at present, and enough rigidity is already imposed
on current robotic systems. This method also advocates the building of stiff, precise
robots [3,4], further structuring. In highly structured systems it is the accumulative
effect of small errors caused by, kinematic, kinetics and sensor data that makes such
systems fail continuously.

The second method proposes robots incorporating learning and reasoning through
the use of sensory integration [1]. It is the route to reducing uncertainty that is reported on
here. Through applying knowledge-based methods to data acquired from various sensors,
robust sensory integration techniques were developed that improve robot system flexibility,
generality and reliability [9]. Throughout the paper, numerous examples are given of the
types of uncertainties commonly associated with robot sensors. Generally, these either
take the form of uncertainty factors associated with data collection, e.g. noise, or,
through poor data interpretation by humans.

Brady [2] defined robotics as the intelligent connection of perception to action. As
such, the control process requires three fundamental elements:

. perception
. action
. intelligence

Perception, is defined here as integrated sensing. All sensors provide data which
is incomplete or ambiguous. To solve this fundamental problem we have two options.
First, to try to make perfect sensors. Second, to make effective use of several sensors so
allowing individual sensors to complement each other in a graceful and integrated fashion.
The usual vehicle for such integration is referred to as a world model. Action is simply
referred to-as:any.mechanical.operation in the world. Intelligence, in the context of this

43

paper, is viewed as a process involving the learning of the relationship between perception
and action.

A brief overview is given of three pieces of work related to the theme of sensing for
intelligent control. The first shows how sensory data collected from different geometries
can be merged into a simple world model in the domain of mobile robotics. The second,
how integrated qualitative sensing provides control in a dynamic domain. Initially, the
classic control problem of the inverted pendulum was chosen to demonstrate the principle
and conduct experiments on a purpose built test-rig. Later, the theorems developed were
applied to a satellite control problem to test their robustness. In each instance sensory data
was used to induce control rules. The third shows how rule induction is useful for
integrating different sensing modalities, and for classifying objects.

WORLD MODELLING FOR MOBILE ROBOTS

Because they operate in technically complex environments mobile robots are
considered to be a perfect platform for developing knowledge-based methods for sensory
integration and researching into uncertainty. These robots are now entering a new phase
of development that will see them become free-roving, be able to avoid obstacles and
dock. No longer will they be constrained to their present wire-guided, pre-defined routes
[6]. Although we are only in the initial stages of mobile robot development, it is
recognised that the complexity of their technology must equal the complexity of the
environment in which they operate.

Sensory integration alone is not well understood, therefore it is a barrier to
progress. Integration requires consistent and repeatable algorithms that deal with
uncertainty, technically these are difficult to develop. The AI community considers this as
a major research area of interest because it has prior experience of uncertainty generation
and representation. The data that requires interpretation is obtained from sensing sources
that are becoming increasingly more complex leading to computational overheads.
Although vision remains the major sensing medium at present, free-roving robots might
require data to be integrated into a world model from numerous sensors, e.g. taction,
inertial navigation systems, laser ring gyros or acoustic rangefinders. Presently these
sensors suffer from a combination of uncertainty factors such as noise, poor resoluton,
reflection problems and enormous computational needs. However, continued advances in

Figure 1 A black and white photograph of a teapot

45

Figure 2 Nine line drawing replies

ol La N ZJI_E})I

46

all the areas highlighted should see successfully planned, collision-free navigation for
mobiles, and robot systems in general.

Sensory integration must address the problems of incorporating data into a dynamic
world model. This means handling data obtained from different sensors, multiple data
from a single sensor or, in the case of compliant tactile sensors, time-varying data from a
single sensor [5]. In this paper an attempt is made to reduce sensor uncertainty through
using a common data structure as a repository for sensory data. Finally, knowledge-
based methods are used to control the data integration, and provide reliable and consistent
information.

Two major paradigms predominate the approaches taken to early and intermediate
computer vision. In early computer vision, the major paradigm consists of describing the
world in terms of explicit edge tokens, these descriptions were then used as a basis for

. computing useful intrinsic information. For intermediate computer vision, the major
paradigm is based around the idea of the 2.5D sketch which describes local surface
orientations and discontinuities relative to the viewer using a rich symbolic language.
This then represents a crude world model. Unfortunately, these approaches have been
fraught with problems. First, the current generation of edge detectors still provide hesitant
tokens which suffer from distorsion, omission and false labeling whilst empirical results
suggest that edge detection is an ill-posed problem per se.

As an indication of the uncertainty surrounding edge detection consider the results
obtained from a recently conducted experiment [8]. The experiment consisted of providing
twenty emminent vision practitioners with a photograph of a teapot, Figure 1, an acetate
sheet and a pen, they were then asked to identify the edges. Figure 2, shows the line
drawings of the nine replies received. Obviously, there is a considerable degree of
uncertainty with regard to what constitutes edges. Second, and as a consequence,
intrinsic image computation based on edges has provided only frail solutions using natural
image data. These essentially negative conclusions have been bolstered by the discovery
that useful intrinsic image representations may be generated without prior recourse to edge
tokens.

TOspace, see Figure 3, is a single 3D iconic data-structure into which may be
merged data from surfaces rather than edges. This data may be either visual or tactile in
originy The data=structure has beenused to provide navigation information for a mobile

Mobile robot with
stereo cameras in

corridor TOspace representation of this
cross-sectional slice is shown at
the foot of the page

Image from Image from

left camera right camera

Left disparity map |

Left con-
fidence map

Right con-
fidence map

(x, y, gray) |—» (x;y;2)

(0,0,0)

The ‘TO’ representation of
slice 23 (distance from
sensor 8.5m)

TOspace
B “T’ransparent
O ‘O’paque

48

robot on the basis of stereo computation from visual images. Absolute information
concerning the robots position was integrated into the world model and used to update the
known co-ordinates of location and heading.

The model is little more than a computationally convenient repository for range
information. The choice of description language (transparency or opacity) follows from
the observation that this is what should result from any shape-from-X or tactile sensation.
The choice of a 3D data-structure is useful on two accounts. First, it allows easy
geometrical transformations whenever we require a solution which does not project to a
point at a sensor. For example, when running through a forest or playing tennis we
perform many actions that need to be interpreted within a dynamic coordinate frame. In
tennis we may perceive the ball from one position but require a different projection to make
the information useful, i.e. at the position of the racquet. Second, issues such as
occlusion become non-issues in that occlusion only exists for viewer centered descriptions.
The advantages of a 3D iconic data structure are that it is neither viewer centered, nor is it
object centered. It simply attempts a literal model of the surfaces present in the world, and
may be used directly as a basis for navigation, collision avoidance or, following
invocation, recognition itself.

MACHINE LEARNED CONTROL OF DYNAMIC SYSTEMS

Conventional approaches to the control of dynamic systems, such as robot arms,
involves the modelling of the system dynamics followed by the use of the resulting inverse
kinematics for control. Such methods clearly have problems whenever it is difficult to
model the dynamics of the system.

One early attempt to provide effective control without knowledge of the system
dynamics was performed by Michie and Chambers [7] in which a machine learning
algorithm called BOXES was used to balance a simulated inverted pendulum. The only
objective of the system was to avoid failure, which was reported when the angle of the
pole exceeded a certain angle or the cart displacement reached either end of a finite length
track. The experiment consisted of applying this control strategy in an attempt to keep the
system from failing as long as possible. Learning occurs after each failure when the
learning algorithm alters the control strategy, then experimentation is continued until the
polé canrbesuccessfully balanced foranindefinite period.

49

The control strategy described is used to control an inverted pendulum and cart, a
complex dynamic system, albeit a dynamic system which can be effectively controlled
using classical means, e.g. a proportional plus derivative controller. So, in an attempt to
increase the complexity of this particular dynamic system bang-bang control was used, and
the learning algorithm was supplied with limited sensory data, the pole angle only. The
analytical solution of the problem shows that four state variables: the cart position; the cart
velocity; the pole angle and the pole velocity describe the state of the inverted pendulum
and cart at any instant.

The state space is filled with four dimensional boxes, one dimension each for the
four variables described above. In each box the variables fully describe one state and,
based on the information contained within a given box that state decides whether the cart
should be pushed left or n'ght. If the pole is balanced successfully then the controller has
become expert in balancing the pole, in that part of the state space only. However, in
another part of the state space, one in which the controller has no experience, any attempt
to balance the pole could meet with sudden failure. Thus, control strategies for many
experiments are required in order to learn how to balance the pole, this experimental
knowledge-base is then used to construct a generalised controller for the complete state
space.

When the generalised controller was constructed, the box structure could be
simplified to the point where human readable rules can be extracted, Figure 4, these
control rules were of the form:

if the angular velocity of the pole is less than a given threshold then push left

else if the angular velocity of the pole is greater than a given threshold then push right
else if the angle of the pole is less than a given threshold then push left

else if the angle of the pole is greater than a given threshold then push right

if the velocity of the cart is less than a given threshold then push right

else if the velocity is greater than a given threshold then push left

else if the position of the cart is less than a given threshold then push right

else if the position of the cart is greater than a given threshold then push left

The rule above, derived by Sammut [12] from simulation, is similar to the Makarovic [11]
rule, which was derived from examination of the equations of motion. The major

50

Mechanical system with
associated sensors

Allow BOXES to learn
over many trials

l

Run the BOXES controller
through an inductive
learning algorithm

l

A set of rules capable of
dynamic system control

Figure 4 Using BOXES for generating a rule-based controller

QO

Figure 5§ The inverted pendulum

51

difference between these two separate approaches was that whereas Sammut's rule was
derived from knowledge of the system it was controlling, Makarovic learned only from
examining the response of the system to a limited set of actions.

In the original work by Michie and Chambers [7], the algorithm worked by first
partitioning the four dimensional problem space into a finite state space consisting of 255
states. Each state offered an, initially, random control solution (push left or push right),
whose value was modified by a simple credit assignment algorithm. It is this initial
partitioning exercise that is one of the domains being worked on in a new phase of this
work. It is percived that automatic partitioning, rather than human partitioning, might
lead to more effective and efficient learning, paricularly in the start-up phase. Automatic
partitioning also becomes a necessity where uncertainty factors arise after learning is
completed. For example, if a sudden change occurred in the system dynamics , e.g. a
part falling off a satellite, giving a resulting change in inertia, it would be necessary for the
controller to retrain itself. It is also useful for handling noisy signals or for cases where a
state continually lands on a boundary.

This simple BOXES algorithm offered an effective control strategy which has been
extended by recent work at the Turing Institute. After first replicating the original work an
apparatus was constructed of the type shown in a diagrammatic form in Figure 5. This
has been used to show how signals produced from a single sensor, an imposed uncertainty
condition, can help to partition the state space and lead to effective control under
dynamically unstable conditions. Using a rule-based control algorithm developed by
Makarovic [11], that is in fact a derivation of BOXES, The pendulum balanced for 31
seconds. More recently however a rule-based algorithm developed at the Turing Institute
has balanced the pendulum for 90 seconds.

Having successfully demonstrated the effectiveness of rule-based algorithms as an
adaptive controller, the next phase of the project is the implementation of BOXES to other
machine learned control domains. Further, it has been shown that the machine learned
model for control has broad generalisibility. For example, Sammut [12] has shown that
the rule base may be used directly for the control of a satellite. Here, the goal was to
control the attitude of a robotised satellite in low Earth orbit, a satellite that has an on-board
manufacturing capability operating in micro-gravity. Internal and external maintenance is
undertaken by a robot arm. Working within these constraints, and in addition having to
cope with the problemvofiremotersensing, the satellite had to function effectively with

52

\

L6090 L

gl

XS

TR

-x—- c@dde -

-y—- IS

Figure 6 Satellite simulator controlled by BOXES rule-base

53

Ethernet + modems

RS 232's

Puma 260 +
B pneumatic gripper
Synthesiser = + local sensors

Controller
+interface

Voice Lord LTS-300
Recogniser /= | array tactile sensor

Puma 260 +

pneumatic gripper
+ local sensors

Figure 7 The Freddy 3 advanced robotics research testbed

o ZgLib

54

minimum human intervention. When presented with a 'black box' simulation of this
particular space craft an adaptive controller was developed, one based on Al methods
described previously, which proved to be more robust than systems being developed from
traditional control theory. The results showed that not only did the controller keep the
satellite in its desired orbit, but it did so using the minimum amount of fuel, Figure 6.

RULE BASED INTEGRATION OF VISION AND TACTION

There are two ways in which taction and vision may be integrated. First, in a
coarse-to-fine procedure where vision is used to provide coarse information for hand/eye
control which is then refined by tactile signals during object manipulation. Second, in the
use of both vision aﬁd taction directly for the task of object recognition. The work
described here shows how rule-induction can be used for this latter task.

The experiments were conducted using the Freddy 3 advanced robotics research
test-bed, Figure 7, which features both multiple vision systems as well as a Lord LTS-300
array tactile sensor, Grant et al [5]. This may be considered as a force camera in that it
produces data which is iconically mapped to the world.

This may be casually described as a "footprint”, from which we can recover shape
attributes of an object which may form a basis for classification. Basically, the operation
of the LTS-300 is as follows, when an object is placed on the skin of the sensor, the
conductive coating on the underside makes contact with the sensing sites. These sites, an
80 x 80 array, are etched onto a printed circuit board, recorded data readings are
proportional to the applied load. The vision system also provides shape attributes. The
role of sensory integration is to make effective and economic use a minimal subset of
attributes (vision or taction) in which combined sensory data provides a classification
solution which is simpler and more accurate that using just a single sensor.

Separate areas of uncertainty were observed throughout the integration experiment.
The most serious were the uncertainties inherent in the tactile sensor sensor itself, the
product of poor specification and design. Not only did the sensor generate noise during its
calibration experiments, Figure 8, it also gave hysteresis and creep curves that could be
problematic in classification applications. Fortunately, all the work was undertaken in an
cn\}ironment that-allowedthe-development of knowledge-based filters and tools to achieve

55

ety e § a ... original image.
4 b ... image after streak removal and
s . _ median filter has been applied.
Y L ¢ ... differnece image.
g : : -:‘ojw" .
=
R 3 -ua;« c

Figure 8 Composite filtering

LU EJI—EL'

56

V. I
Complexity Performance
attributes nodes number number | percentage
calculated in tree correct wrong correct
Vision 4 15 9 11 45
Taction 5 15 11 9 55
Both
: : 2 0 100
together 2 7 0
0 D ST

Figure 9 Summary of sensory integration experiment

successful object classification. Mowforth et al [10] demonstrated results for a simple
classification exercise, results describing both the complexity of the task as well as

performance accuracy are shown in Figure 9.

ACKNOWLEDGEMENTS

The author thanks the SERC, National Engineering Laboratory, Westinghouse
Corporation, Hunting Engineering and Lord Corporation for funding the research and/or
their support. Thanks also to Peter Mowforth my co-researcher, Jonathan Shapiro and
Paul Grant for the TOspace work, Claude Sammut and Paul Gisbey for the pole balancing

and Stephen Rutherford for assistance with the sensory integration project.

57

REFERENCES

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

Baird, s. and Lurie, M. Precise robot assembly using vision in the hand. In: Pugh,
A., editor, Robot Sensor, Vol 1, IFS, pp 85-94.

Brady, M. Artificial intelligence and robotics. Artificial Intelligence, 26(1), 1985, pp
79-121.

Brost, R.C. Automatic grasp planning in the presence of uncertainty. In:
Proceedings 1986 IEEE International Conference on Robotics and Automation, 7-10
April, 1986, 3, San Francisco, CA, pp 1575-1581.

Durrant-Whyte, H.P. Uncertain geomerry in robotics. In: Proceedings 1987 IEEE
International Conference on Robotics and Automation, 31 March-3 April, 1987,
Raleigh, NC, 2, pp 851-856.

Grant, E., Mowforth, P.H., Rutherford, S. and Wagstaffe, N. Arn array tactile
sensor and its value in automation. In: Proceedings of the 18th International
Symposium on Automotive Technology and Automation, , ISATA, Florence, Italy,
May 1988, pp 234-240.

Harmon, S.Y. Robot mobility: which direction and how far ? In: Robots 11,
SME 17th International Symposium on Industial Robots, 26-30 April, 1987,
Chicago, ILL, pp 17-1 - 17-11.

Michie, D. and Chambers, R.A. BOXES: an experiment in adaptive control. In:
Dale, E. and Michie, D., editors, Machine Intelligence 2, Oliver and Boyd,
Edinburgh, 1968, pp 137-152.

Mowforth, P.H. and Gillespie, L. Edge detection as an ill-posed specification task.
TIRM-87-026, November 1987, The Turing Institute, George House, 36 North
Hanover Street, Glasgow G1 2AD, Scotland.

Mowforth, P.H. and Grant, E. Three examples of sensing for intelligent control.
In: Proceedings 1988 IEEE 3rd International Symposium on Intelligent Control, 24-
26 August, 1988, Arlington, VA.

Mowforth, P.H., Grant, E. and Rutherford, S. Rule based integration of vision
and taction. TIRM-87-023, June 1987, The Turing Institute, George House, 36
North Hanover Street, Glasgow G1 2AD, Scotland.

Makarovic, A. Pole balancing as a benchmark problem for qualitative modeling.
IJS Delovno porocilo 4953, Jozef Stefan Institute, Ljubljana, Yugoslavia,
December 1987.

Sammut, C. Experimental results from an evaluation of the algorithms that learn to
control dynamic systems. In: Laird, J., editor, Proceedings of the 5th International
Conference on Machine Learning, Morgan Kauffman, San Mateo, CA, June 1988,
pp 437-443.

Part 11

Vision Algorithms and Architectures

ERT 2|J|_l}>|

Robotic Vision Knowledge System

Andrew K.C. Wong
PAMI Lab, Systems Design Engineering
University of Waterloo
Waterloo, Ontario, Canada

This article presents a robotic vision knowledge system based on some current sensor and
machine intelligence methodologies, quite a large portion of which has recently been developed
by the PAMI Group at the University of Waterloo.

In this system, there are two major sources of image input: grey tone images from CCD
cameras, and range data images from synchronized laser scanner or from structured lighting
scheme coupled with CCD cameras. The grey tone images are used for model generation and
object recognition, location and tracking. The range data are used for surface profile measure-
ment, gauging, and recognition. From range profile and discontinuity, edges can be detected
and regions can be grouped into hyperpatches or enclosed surfaces of distinct geometry. Special
techniques are used to relate the local profile information point features which form the object
reference. In 3-D shape synthesis using grey tone images, a system integrating a fast feature ex-
tractor with a domain knowledge guided local feature filtering and geometric reasoning scheme is
used. Synthesized shapes are then represented in the form of 3-D random graphs and attributed
hypergraphs which can be translated into procedural knowledge in the form of rule network for
real time object recognition and location using hypothesis refinement search strategies.

A research prototype of the vision knowledge system is currently under development for a
multi-agent intelligent robotic workcell and for a project related to the Mobile Servicing System
on Space Station. Preliminary experimentations already yield encouraging results.

1 Introduction

The general goal of computer vision is to construct, from images of physical objects, explicit and
meaningful descriptions which can be processed and inferred by computers for various purposes.
The way visual information is extracted by an imaging system and transformed into quantitative
and symbolic representations crucially affects the effectiveness of a vision system. We assess this
effectiveness by judging the performance of the three major phases of the system: 1) the 3-D
measurement of an object; 2) the transformation of the measured data into a representation of
the object and 3) the use of the representation for object recognition and location as well as 3-D
scene interpretation. Hence, the major issues concerning many researchers in robot vision today
are: 1) the effective acquisition of visual information from objects and scenes; 2) the recovery
of two- and three-dimensional information from the acquired images; 3) the representation of
the geometrical and spatial information in a suitable quantitative and/or symbolic form for
inferences.

Because of the variable nature and complexity of the real world, the major problems encoun-
tered in a vision system are: 1) intensive computation and 2) susceptibility to various sources
of noise. It is computation intensive partly because of the huge amount of data to be processed
in a sizable image and partly because of the levels of data transformation required to compress
data into a coherent interpretable form. Due to the sensitivity of various analytical techniques,
often the analytical results highly depend on the technique used or the parameters set. Hence
to maintain acceptable consistencies and reliability in the final interpretation of the results by a
computer vision system is a difficult and usually frustrating task. Though considerable efforts
have been devoted to filtering or eliminating noise at various processing levels, the results are

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Soringer-Verlag Berlin Heidelhere 1991

62

still not encouraging. One of the observations is that most of the current systems are devised to
transform information from lower levels to higher levels and at each level of the transformation,
noise could be introduced. But, often in a vision task, what mostly needed are certain visual
and geometric information and constraints of the objects and the scenes. Hence, one feasible
and realistic approach to computer vision is to use high level knowledge or highly redundant
joint events obtained from visual and/or spatial aspects of the scene to tolerate or to bypass the
effects of the low level noise. In this article, we present a machine intelligence and knowledge
based approach to real world and real time 3-D vision for robotics applications based upon this
philosophy. The system is largely evolved from current sensor and machine intelligence method-
ologies, quite a large portion of which has been recently developed by the PAMI Group at the
University of Waterloo.

In this article, we first give an overview of a computer vision system and a brief survey
of recent research activities in three-dimensional vision. Next we describe the robotic vision
knowledge system developed at Waterloo. Finally, we present and discuss the results of some of
the industrial and space applications.

2 Computer Vision: An Overview

Figure 1 gives a schematic of the basic processes and their relations in computer vision. Blocks
linked by solid arrows represent processes generally adopted in existing systems. Those linked
by dotted arrows describe activities related to some new trends and developments.

After the preprocessing phase, the image is usually transformed into a parametric form in
terms of specific local feature codes or binary codes representing the foreground and background
of the image [39]. Features may range from edges, streaks, to any local features such as corners
and bright spots. In 3-dimensional range images, range, edges, surface orientation and curvature
could be obtained through the use of smoothing and interpolation techniques [62].

The extracted features or grey level values obtained for different locations can be used to
segment the image into regions or other coherent components such as borders, ribbons, curves,
blobs, etc. This process is goal-oriented. In a more complex scene analysis, it may be necessary
to separate different types of regions—regions with certain grey level or color, or regions with
homogeneous texture content. In addition to segmenting a region based on its local features,
tracking or reinforcing curves or borders of regions are generally included in the region seg-
mentation and description process. An important phase in furnishing a region with low order
structured information is texture analysis. The texture information can be used to segment
regions [35]. Through the use of special classification and clustering techniques, the texture
content of the regions can be represented and classified [46].

Once distinct regions are segmented, described, and labeled (or parameterized), the next
phase is to represent the geometry of shape and the structural (or textured) content of distinct
regions by special mathematical models for quantitative analysis, classification and comparison
[61]. Though various mathematical and geometric models have been proposed today, their
applicability is generally task dependent and justified largely by experimental results.

At the higher level of scene representation and analysis, relational structures are used. In
this representation, both the shape and content (or attribute values) of each component as well
as the type of relationship between components, will be included. Mathematical or algorithmic
models have been developed for comparing and inferring relationships [62,2].

Robot 3-D vision requires shorter image processing and analysis durations. The 3-D scenes,
in general, are more complex in a factory environment. To follow a comprehensive process of data
transformation and analysis at various levels is often beyond the task requirement. A new trend

63

IMAGES fo-=-mmmmmmmmm e -

H

N H

N t

\‘ :

[prEProcESSING . ;
\\ '

AN 1]

N 1]

\ 1

\ 1]

\ 1

N\ L]

N L]

N 1]

N H

AN H

SEGMENTATION \ :
Thresholding ‘-——————JL FEATURE EXTRACTION |i

Tracking
Region Growing

1
1
]
1
]

KNOWLEDGZ

REGIONS

d

/——_—\-—-—r GEOMETRY
RELATIONS | | AND .
] SHAPE ANALYSIS -~ -

e e c e N

I

INFERENCE

P ' '
/ . _- 1 i}
/I r’ - - : :
-~ -
i ‘/ T H H
7 L LA - ' '
¥ Ve < !
SHAPE R KNOWLEDGEZ | !
SYNTHESIS |~ \ REPRESENTATION ACQUISITION

OBJECT RECOGNITION/LOCATION
SCENE ANALYSIS AND INTERPRETATION

Figure 1: A Schematic of Computer Vision Activities

is to bypass some of the intermediate processes (dotted arrows on the right side of Figure 1).
This is made possible if specific knowledge about the objects are used to tolerate preprocessing
or early processing noise. To cope with the complex representation of the real world, automated
shape synthesis and knowledge acquisition for object representation, recognition and location

have been developed [61,19].

64

3 Three-Dimensional Vision Systems

A comprehensive survey on 3-D object recognition can be found in [8,7,27,16,42]. In general, the
three major phases of a 3-D vision system following roughly the schematic in Figure 1 are 1) 3-D
measurement of an object; 2) the transformation of the measured data into a representation of
the object; and 3) the use of the representation for object recognition and interpretation.

3..1 Extraction of Spatial and Geometric Information

To extract spatial and geometric information from physical objects, two major approaches have
been adopted, namely stereo vision and structured lighting.

1. Stereo Vision

For stereo vision, 3-D geometric information can be constructed by matching the stereo-
scopic image pairs, aided by techniques of correlation and the resolution of the occluded
parts [1], [48]. Algorithms have been developed for finding a matching between two point
or plane patterns given in m-dimensional Euclidean space [52] and for matching subsets
of points (also known as constellations) between a pair of stereoscopic images [63].

2. Structured Lighting

Industry has embraced structured lighting schemes since the environment can be controlled
to ensure acceptable machine vision activity [30,42]. These artificial light features provide
additional information and constraints to assist in the matching process(es) [24].

Shading variation or textured patterns are also used to constrain the surface orientation for
scene interpretation [26], [55]. A related system that illuminates the scene with a regular
pattern of light, e.g. a grid, and to derive surface orientation from the deformation of the
grid is reported in [54]. To derive geometric information from texture and shade patterns
requires sophisticated algorithms. When the size of the object varies or when the surface
becomes fairly complex, changes in the resolution of the grating patterns and sophisticated
edge detection techniques have to be introduced. Hence, most of these methods are used
for scene interpretation. In general, they lack the accuracy and robustness required by the
industrial tasks.

Laser scanning [62] is another structural light method. Several commercial products that
utilize laser scanning to obtain a depth map or depth image are now available. A synchro-
nized structured lighting scheme in the form of stripes has recently been developed in the
PAMI Laboratory at the University of Waterloo. It has the same capability as the laser
scanning method. From the range data, spatial location and the 2%-D and 3-D information
of the object can be derived. The depth image contains the encoded spatial location and
distance information [60,58].

3..2 Object Representation

An object representation scheme is generally examined under two criteria [23]:

1. descriptive adequacy, i.e. the ability of a representational formalism to capture the essen-

tial visual properties of objects and the relationship among objects in the visual world;
and

2. procedural adequacy, i.e. the representation scheme’s ability to support efficient processes
of recognition and search.

65

Literature review of object representation schemes can be found in papers such as [7,37].
They include: 1) generalized cone or sweep representation [44,47]; 2) multiple 2-D projection
representation [53]; 3) characteristic-views technique [14,48]; 4) skeleton representation [20,50];
5) generalized blob representation [31]; 6) spherical harmonic representation [43]; 7) overlapping
sphere representation [32]; 8) wire-frame representation [7,37]; 9) constructive solid geometry
(CSG) representation [7,37]; 10) spatial-occupancy representation which include: a) voxel rep-
resentation, b) octree representation [29], c) tetrahedral cell decomposition representation [7],
d) hyperpatch representation [13]; 11) surface boundary representation [7]; 12) attributed graph
and hypergraph representation [62].

Another approach uses directly the procedural knowledge organized in a form of rule network
for object recognition and location from a perspective image of the scene [38]. It uses a hypothesis
refinement strategy to direct the search. This approach has been demonstrated to be fast and
reliable and well suited to domains where the number, type and basic geometric characteristics
of the objects are known. It has the distinct advantage of requiring only one camera (one image).

4 Vision Knowledge System Configuration

4.1 An Overview

Figure 2 gives an overview of our configuration of the robotic vision knowledge system.

The system uses two major sources of image input: grey tone images from the CCD cameras
and direct close-up range data images from the synchronized laser scanner (or structured lighting
scheme coupled with CCD cameras). The grey tone images are used for model generation as
well as for object recognition, location and tracking. The range data are used for surface profile
measurement, gauging, and recognition.

To extract three dimensional information from range data, vectors normal to the surface at
different points are computed; edges are detected and regions or enclosed surfaces of distinct
geometry are grouped into hyperpatches [61]. The procedures include: 1) extracting profile and
edges; 2) analysis and merging data to form hyperedges (or faces); 3) constructing an AHR of the
scene; 4) performing a database search for subset of potential candidate AHR’s; 5) conducting
AH morphism operations (including AHR synthesis whenever necessary) for object recognition.

For fast object recognition, location and tracking, the grey tone images are more appropriate.
Special local features are extracted for 3-D shape synthesis to form an AHR or a 3-D random
graph [60]. The knowledge acquisition can also be directed by “experts” through their interpre-
tation of the object and scene or by the use of 3-D dimension information from CAD data. This
process can be coupled with an autonomous rule generation procedure under development.

The point features of an object can be fused with surface profile information, when the
same CCD camera is used to acquire range information on the surfaces of an object. A special
procedure has been developed which relates the surface to a local reference derived from the
position information of a subset of well-defined conspicuous points. The combined information
can be organized and integrated into an AHR. Once the declarative knowledge of 3-D objects
or scenes are represented in various forms of AGR and/or AHR, the representations can serve
as models. They will be integrated into the vision knowledge system for fast retrieval and
compression in the object recognition and location phase.

For recognition and location of objects using CCD cameras, the knowledge-directed search
methods based on hypothesis refinement are used. The method provides reliable and efficient
scene interpretation by means of incremental refinement of the 3-D scene interpretation. Any
domain knowledge that could be exploited will be input to the rule network to reduce the context

66

Images

Y CAD Data
Data Compression

A

Y

' - Knowledge Acquisition <
Feature Extraction (Model generation,
DB organization) -+ EXPERT
A 1
] 1
1
Y Y Do
1
Representaton |~~~ """t ------------ v
(Declarative Knowledge) 4 !
] Rule Network '
{Procedural Knowledge) !
A i
R '
> Inference [!
1
1
1

Object Recognition/Location/Tracking
Scene Analysis and Interpretation

Y
Trajectory Planning

Figure 2: The Conceptual Configuration of the Vision Knowledge System

and to impose more specific constraints. The constraints provided by the scene interpretation
guide the selection of key features used to establish object position accuracy. The vision system
has been applied to robotic assembly tasks, scene interpretation for robot vehicle and visual
inspection.

In case of conducting guaging or measurement on a 3-D surface profile, first the local reference
of the objects of the scene relative to the camera or laser scanner has to be established. Then
the local references obtained from the 3-D objects can be correlated with those stored in the
knowledge base. Once the coordinate correlation has been established, direct comparison of
corresponding points obtained from the range data with those in the model enables the system
to measure the deviation of the observed surface from the model surface. Direct measurements
of the surface relative to the local reference points of the object can also be conducted in the
similar manner.

With the basic image analysis techniques and knowledge representation built into the system,
on-line inferences for profile measurement and guaging, object shape synthesis and model gener-
ation, object recognition, location and tracking as well as scene interpretation can be achieved.
Once the position information in the Euclidean space is acquired and inferred from the vision

67

knowledge system, trajectory planning can be conducted to compute trajectories in the configu-
ration space for various joints of the manipulator such that the entire posture of the manipulator
can avoid collision with itself and any nearby objects while accomplishing an assigned manip-
ulation or inspection task. In this section we shall describe some research activities leading to
the development of such a system.

5 Knowledge Representation and Inference for Vision Systems

A representation of knowledge is a combination of data structures and interpretative procedures
(i.e. inference) which when taken together will lead to knowledgeable hehaviour [4]. Traditional
AT thinking has divided knowledge representations into two major classes: declarative and pro-
cedural. Since almost no representation scheme is entirely one or the other, arguments about the
relative value of one representation over the other are now of the past. But, the categorization
does provide us with a way of grouping various representation schemes. The declarative repre-
sentations encode knowledge as a collection of related facts. Procedural knowledge is embodied
in the inference mechanisms which operate on these sets of facts. One group of declarative
representations that will be looked at in detail is that which uses a certain type of graphs to
capture the structural information in a domain. The emphasis of the declarative representation
is the provision of a framework to store structural information in a most general, natural and
comprehensive fashion. In principle, we wish the representation to be invariant. To utilize spe-
cific domain knowledge for effective inference, a certain form of procedural knowledge can be
derived directly or indirectly from the objects or from their declarative knowledge.

5.1 Declarative Knowledge of Structural Representation: Graphs

In this section we shall focus on the knowledge representation of structural or relational models.
The types of structural descriptions to be considered are: 1) semantic networks [4]; 2) graphs
[9] including attributed graphs [56,2], hypergraphs [5,60], random graphs [33,64,57].

5.1.1 An Early Form: The Semantic Network Representation

The semantic network representation was originally proposed by Quillian [34] and Shapiro [45].
A semantic net represents information as a set of nodes interconnected by labeled arcs that
represent relationships among the nodes. All semantic networks share the following features:
1) a data structure of nodes which represent concepts (generally in the form of a hierarchy of
nodes connected by the ISA relationship) and other property links; and 2) specialized inferential
procedures which operate on the nodes with the inheritance of information from the top levels
of the hierarchy to the level of ISA links.

While semantic networks have been a successfully used knowledge representation in different
application domains, some critical issues [12] still remain. For instance, how could information
about classes be distinguished from information about instances of classes, or how could excep-
tion be handled. It has been found that various proposed uniform default-style representations
still have serious flaws.

5.1.2 A More Basic Form: Attributed Graph and Hypergraph Representations

A graph can be seen as a more generalized form of the semantic network. A graph G is defined
to be an ordered pair (V(G), E(G)) consisting of: 1) a nonempty set of vertices V(G); 2) a set

68

of edges E(G) which is disjoint from V(G) and 3) an incidence function ¥ which associates
with each edge in E(G), an unordered pair of vertices from V(G) [9]. This type of structural
description can be used to encode the low-level information about objects such as points, lines
(edges), curves, and surfaces. It can also be used to encode relationships between parts of
objects and between the objects themselves, for example: adjacency, intersection, union, and
containment.

To furnish more specific graph structures for structural pattern representation and for ef-
fective inference, attributed graph representation (AGR), attributed hypergraph representation
(AHR) and random graphs (RG) are introduced [61,56,64,57]. The mechanism for inference
on graph representations is based on the retrieval, matching, recognition and transformation
of graph and subgraph patterns. Usually, graph morphism algorithms are used for comparing
graphs. A graph morphism between two graphs is defined as a one-to-one mapping from the
vertex set of one graph onto that of the other, preserving their edge-to-vertex incidence rela-
tions. Such mappings can be defined to accommodate various constraints and optimality criteria
according to the need and the nature of the problem.

An attributed graph is a graph G, = (Vy, Aq) where V, = vy, v,, ..., v, is a set of attributed
vertices and A, = ..., apq, ... is a set of attributed edges. The edge a,¢ connects vertices v, and
vy with attributed relation.

To represent 3-D objects or model, elementary area attributed and primitive block attributed
graphs are introduced. An elementary area attributed graph G, = (V,, A.) is an attributed graph
for representing a face or hyperpatch bounded by distinct and well-defined edges, where 1)V, is
a set of attributed vertices representing the boundary segments of the face and 2) A, is the set
of attributed edges representing the geometric relation between the segments. For example an
angle of intersecting edge segments can be the relation between them. A primitive block of an
object is a block bounded by surfaces such that there is no concave angular relation between any
pair of the surfaces in the block. Hence a pyramid, a wedge, a cylindrical block can be a primitive
block of an object. Then, a primitive block attributed graph is an attributed graph G, = (Vj, 4,)
which represent a primitive block of an object. The attributed vertex set V, represents the faces
and the attributed edge set A, represents the the geometric relations between faces.

In order to enable primitive or elementary features of an object to be grouped and organized
in a hierarchical yet flexible manner, hypergraph representations are introduced into structural
pattern recognition. A hypergraph [5,61] is defined to be an ordered pair H = (X, E) where
X = 3,%;,...,%n is a set of vertices and F = e, €3,...,en, a set of hyperedges such that: 1)
e = ¢(i = 1,..,n); 2) Ue; = X where X consists of a set of attributed vertices X, and a
set of hyperedges E,. Each vertices is associated with an elementary area attributed graph
representing a face (or hyperpatch), and each hyperedge is associated with a primitive block
attributed graph representing a primitive block.

The AHR of a 3-D object can be constructed either manually using a CAD system or through
a hypergraph synthesis process from the attributed hypergraphs derived from the range data of
different views 3. When constructing the AHR for 3-D objects or their images, we can proceed
in three stages: 1) construction of the elementary area attributed graph for each surface or
hyperpatch; 2) construction of the primitive block attributed block attributed graph for each
component block and 3) construction of the AHR for object(s) or image(s) by considering each
surface as a vertex and each set of vertices associated with a primitive block as a hyperedge, the
primitive block attributed graph being the attributed value of the hyperedge.

Using primitive blocks such as polyhedra or blocks with complete or partial cylindrical,
conical or planar surfaces, we can construct complicated objects. In our system, each primitive
block corresponds to a primitive block graph. The vertices, representing the faces of the primitive

69
block, then form a hyperedge e;. Here the complete AHR of an object model is given in Figure 3.

OBUECT BASE CYLINDER

FACE ON THE
OBJECT ELEMENTARY HYPERGRAPH
AREA GRAPH

Figure 3: Attributed hypergraph representation of an object model.

For the recognition and description of objects in images with range data, a special form
of AHR, known as Edge Feature Hypergraph Representation (EHR), the vertices of which are
made up of edges or curves or line segments (observed or derived), is introduced [56]. For the
derivation of 3-D information from objects and location of 3-D objects from 2-D images, another
form of AHR, known as Point Feature Hypergraph Representation (PHR), the vertices of which
consist of point features, has also been introduced. The PHR can take into consideration of the
key point features as attributed vertices (real or projected features such as intersecting point

between edges) and their 3-D spatial relationships as attributed edges. These feature points can
serve as local references where surface profile information acquired from other structured lighting
schemes or laser scanners can be integrated into the representation. The PHR can be directly
represented by a parametric 2-D image in which the point features are treated as vertices, and
distances or edge properties between points become the relation attribute values. Such a PHR
is called an implicit image graph. The advantage of such representation is that it can be directly
obtained from the parametric image without an additional symbolic representation construction
process.

70

5.2 Graph Morphisms as an Inference Mechanismn for Comparing Struc-
tures

Graph morphism can be described as the recognition that a graph, or one of its subgraphs, is
embedded in another graph. These graphs will be designated as G = (X,U) and H = (Y,V)
where G is called the domain of the morphism and H is called the range. Formally, a morphism,
or mapping, of G onto H is denoted as a pair of mappings: f = (a,) where a is a vertex
morphism and g is an edge morphism. Therefore, f : G — H is equivalent toa: X — Y and 8 :
U — V. There are several kinds of morphisms including graph isomorphism [17,18,25], subgraph
isomorphism or monomorphism [15,51,2,22,21] and the largest common subgraph isomorphism
[59].

Graph isomorphism is the mapping f = (o, @) is an isomorphism of G = (X,U) onto
H = (Y,V) if and only if for all 1 and ¢' in X and e;;» in U there exists j and j' in ¥ and e;; in
V such that a(i') = 7' and f(e;) = €;;+ [6,10,17,18,25,36,41,49].

A largest common subgraph isomorphism [59] is a one-to-one mapping between the subgraphs
of two generally non-isomorphic graphs such that the largest number of incidence relations are
preserved between them. More formally,let G = (X,U) and H = (Y,V)and G, = (X,,U,) C G
and H, = (Y,,V,) C H. A mapping f, = (&, Ba) is the largest common subgraph isomorphism
of G onto H if and only if for all 7 and ¢' in X, and e; in U, there exists 7 and 5/ in Y, and
ej; in V, such that ao(f) = j and au(i') = j' and Ba(e;ir) = e;;» where the number of e is a
maximum over all such mappings.

A hypergraph monomorphism [61] is based on maximal incidence preserving vertex matching
between hyperedges of the two hypergraphs. The maximal hyperedge matching is actually a
matching of the optimal graph monomorphism type [65] applied on a small portion of the graph
represented by hyperedges. Instead of aiming at searching the entire sets of elements, it attempts
to find component-component correspondence or subgraph isomorphism for both of the entire
graphs. The hypergraph monomorphism provides a natural means to reduce the number of
comparisons. For an ohject hypergraph H,(X,, E,) and a model hypergraph H,. (X, Ep),
there exists a monomorphism of H, onto H,, if the following necessary conditions are satisfied:

1. each v; in H, is matched or partially matched by some vertices vy in Hy, in such a way
that the elementary attributed graph G, is monomorphic to G;;

2. each hyperedge in H, and H,, is associated with a primitive block graph and for G.,
associated with e; in H,, there is a monomorphism of G¢; onto a primitive block graph
G, associated with ey in Hp,.

Figure 4 gives an example of 3-D object recognition based on attributed hypergraph monomor-
phism.

Finding the isomorphism between a graph and a subgraph of another graph belongs to the
class of NP-complete problems. For the case of attributed graph, the average complexity can be
greatly reduced if the contextual information and the structural relation between AGR’s could be
exploited. The specificity of the attributes and the attributed relations usually reduces the search
space if vertex ordering [17], pruning [18] and branch-bound heuristics are appropriately applied.
However the average complexity is still a function of the sixes of the graph. In a situation when
there are many identical attributed vertices in an object, the vertex ordering method can do little
for reducing the time complexity. One of the reasons of introducing the attributed hypergraph
representation and monomorphisin is to organize the graph into appropriate components such
that part of the morphism finding process can be restricted to the comparison of subgraphs
depicted by hyperedges.

3
[1t]
1

a) 0BJECT

c) MODEL d) HYPERGRAPH OF THE MODEL

Figure 4: A 3-D Object Recognition Experiment

5.3 Objects and Scene Representation Based on AGR and AHR

In Section 3.2 various schemes developed earlier which attempt to represent 3-D objects in a
form suitable for manipulation and recognition have been mentioned. The most common ones
are boundary representations, constructive solid geometry representations, sweep representa-
tions and decomposition representations. Most of these schemes are feasible for acquiring the
geometric information from the object image, yet they lack the flexibility for effective recogni-
tion if the orientation of the object varies, or certain parts of the object are occluded, or when
the class of prototypes is large. Furthermore, in most of these schemes, the knowledge of the
prototype object has to be input by the users.

In our system, we adopt attributed graph and hypergraph representations of 3-D objects
(AGR and AHR) [61,56]. This data structure renders a very general representation of objects
or scenes with high complexity. It provides a means to group components or parts of an object
according to the relation that induces the hyperedges. Thus, the same object can be described in
different ways depending on how the hyperedges are formed without affecting the basic primitive
and primitive relations. This representation satisfies the requirement of the descriptive adequacy.

72

With respect to the shape synthesis of 3-D objects and models, we have developed a 3-D
object recognition and synthesis algorithm which is capable of constructing an AHR based on
the information extracted from an image with range data [61]. Another method for representing
3-D surfaces [11] is to use a label relaxation technique to estimate a topographic sketch consisting
of surface patches segmented according to categories defined by differential geometry operators
such as the gaussian and mean curvatures. The method is global (does not require the use of a
local operator for classification), robust to noise and easy to implement. Once the segmentation
is done, recognition procedures such as graph morphism techniques are applied.

The purpose of introducing the AHR is to reduce the cost of finding monomorphisms during
the recognition phase and to guide the graph synthesis process. The complexity of finding the
monomorphism between graphs largely depends on the number of vertices and arcs in these
graphs. The use of AHR results in the reduction of the number of vertices and arcs, and hence
the computational cost of finding monomorphisms. It also enables the recognition of the spatial
configuration of objects in 2-D images using knowledge-directed search. Once a view of an object
in an image is represented by an AHR, an attributed hypergraph monomorphism algorithm can
be applied to compare the AHR with those AHR’s of different prototypes.

5.4 Pattern Recognition of 3-D Objects Based on Graph Morphism

For real-time robot control and on-line decision making, the efficiency of matching between two
sets of elements or graph structures becomes significant. An efficient hypergraph monomor-
phism algorithm [61] is used for such purposes. The object recognition procedure based on such
algorithms can be described as follows:

1. Construct all the elementary area attributed graphs for distinct surface regions of the
candidate object image.

2. Construct all the primitive block attributed graphs for the blocks of the candidate object
image.

3. Construct the object hypergraph Hg.

4. Initiate the search list to include all models screened out from the database through special
feature matching.

5. Search models H,,’s in the list and find the hypergraph mononlorphisms from Hg to Hp,'s.
Delete the models from the search list if no monomorphism is found.

6. If only one model is found then the object is recognized.

7. If monomorphisms from Hy are found for more than one Hp,’s, obtain the hypergraph
from the image of another view of the object and synthesize it with the previous Hp (the
hypergraph synthesis method is provided in Section 5.5).

5.5 Hypergraph Synthesis

From the image of each view of an object, we obtain an AHR which represents the geometric
structure of only those edges and faces of that object visible from the vantage point of the laser
scanner. We call that hypergraph an Image View Hypergraph (IVH) of the object. To gather
more information, several images obtained from different views of a 3-D object should be used.
We have developed a method by which AHR's obtained from different views can be combined
(synthesized) to form a single AHR that yields an AHR of the entire object.

-

73

% |
L4}

(d) SYNTHESIZED AHR FOR IMAGES IN (b)

(a) The laser images for the object from several views.

&t

a) IMAGE 1 b} IMAGE 2

(b) Two different images with face labels.

(c) IMAGE VIEW GRAPHS FOR IMAGEZS IN (b)

Figure 5: Hypergraph synthesis experiment.

74

We introduce the hypergraph synthesis for the following two purposes:

1. To combine two IVH’s of a candidate object image in the object recognition process.

When an IVH of a candidate object is monomorphic to two or more model hypergraphs in
the database, another IVH should be obtained for further recognition in order to resolve the
ambiguity. We then synthesize the two IVH’s into one which contains all the information
obtained about the object from both views. The comparison of the AHR. synthesized from
the IVH’s with model AHR’s in the database may yield a unique monomorphism.

2. To build a model AHR for a new object in the learning phase.

The model AHR’s in the knowledge base could be constructed from direct physical mea-
surements or through learning using information derived from images of different views.
Thus, several IVH’s of the new model can be derived and synthesized into a model AHR.

The hypergraph synthesis procedure can be briefly described as below.

For two hypergraphs Hy(Xy, E1) and Hy(X,, Es), the synthesis process is organized in two
stages to obtain the synthesized hypergraph H,.(X,, E,). First, two sets of hyperedges are
considered. Let e, € Ey and ¢, € Ey. If e, and ¢, correspond to an identical primitive block
of the object, then the primitive block graph synthesis can be applied to them. For each
hyperedge in Hy the comparison is performed to search for its counterpart in Hy. If found the
synthesis procedure is applied to that hyperedge and its counterpart and transfer the synthesized
hyperedge into the set of hyperedges E, in the resulting hypergraph H,. For hyperedges with
no counterpart, they can be directly transferred into E, in the synthesized hypergraph by a
union operation. Next the sets of vertices are to be considered (note that each vertex is an
elementary area attributed graph). By comparing the attributes and the orientation reference
of the vertices, we can determine if a vertex in Xy and a vertex in X, are corresponding to
the same face of the object. Then the elementary area graph synthesis procedure is performed
on those vertices, and as a result the synthesized vertex can be transferred into the resulted
hypergraph H,. Finally a new adjacency matrix for the resulted hypergraph is constructed.
Figure 5 demonstrates a hypergraph synthesis experiment given in [61].

5.6 Procedural Knowledge for Scene Interpretation

The representation of 3-D objects and scenes by attributed graphs and hypergraphs satisfies the
criteria of descriptive adequacy. It is an appropriate declarative knowledge representation for a
computer vision system. However, to use this form of knowledge for object recognition and scene
interpretation, one has first to represent the scene into an AHR and then find the morphisms
between the scene AHR and the model AHR. And, every time when an AHR is derived from an
image, it has to be matched with the entire AHR of the candidate model. Hence, this form of
knowledge representation may not be the most effective form of recognizing and locating objects
in real time. If procedural knowledge can be derived directly from the physical objects or from
the model AHR’s of objects, they can be used to guide the search and inference process in a
more focusing and direct manner. In this section, we present a robot vision system which uses
a special form of procedural knowledge.

The term procedural implies that this representation is chiefly concerned with encoding the
knowledge of how to do some actions or to execute certain procedure. It captures information
which is not very easily described as a set of facts. It then provides a control mechanism for
more effective search and inference. Control tasks for a vision system could include:

1. recognition - coordination of information and inference sources

75

2. planning - organization of system behaviour

3. calculations - organization of information needed to calculate object orientation, location
and range

There is an increasing need to use procedural knowledge in the robot vision system. Emerg-
ing interest in vision guided robotics and autonomous robot vehicles requires effective analysis
of complex scenes within the limitations imposed only by the natural constraints of the environ-
ment. Attempts to provide effective vision must deal with missing or extraneous features due
to glare or shadow, partial or total occlusion by other objects or the robot arm itself, and the
fundamental ambiguity resulting from projection of the original 3-D scene onto a 2-D image.
Many of the traditional approaches to machine vision perform poorly under such conditions and
will generally fail if the image representation is too impoverished (too few visible object features)
or if features are concealed by noise.

The solution to providing effective vision is to adopt a problem oriented approach in which
specific domain knowledge is used extensively for scene interpretation such that the use of
the knowledge of the spatial relationship and the topology of the model and image features is

exploited. The key to the success of such an approach depends on the ability of a vision system
to:

1. have the various types of knowledge represented effectively, and

2. integrate the different knowledge representation schemes together such that the use of the
various types of knowledge is effectuated.

In the vision knowledge system, we integrate the declarative knowledge with the procedu-
ral knowledge. Based on the spatial and geometric relation and visual features, AHR'’s are
constructed and used as the basic data structure to represent declarative knowledge. A rule
network is employed to represent procedural knowledge for shape synthesis, feature extraction,
object recognition and scene interpretation. The scene interpretation process is a step by step
hypothesis refinement process represented as a path through a subset of nodes in the network.
The refinement of a new hypothesis is dependent on the declarative and procedural knowledge
associated with the rule node of the search path. The entire process from image acquisition to

hypothesis refinement is guided by the rule network and is referred to as knowledge-directed
search.

5.7 Model Generation

Due to the flexibility of the AGR and AHR in representing 3-D objects, a shape synthesis process
has been developed. In both the object recognition and the knowledge acquisition processes,
often several images obtained from different views of a 3-D object are used. By this process,
AGR’s or AHR’s obtained form different views can be combined (synthesized) to form a single
AGR or AHR that yields a graph representation of the entire object.

Using the graph or hypergraph synthesis process, a unique model graph can be obtained for
an object. This approach is superior to the alternative approaches which require, for a simple
object, several representations corresponding to its various views. As a result, it is difficult for
them to determine whether or not the representation is complete.

The AHR hased on the structural decomposition view of an object would furnish a systematic
and comprehensive way of representing objects and models. However, this representation may
not render an economical way for determining graph morphisms or for providing a natural

76

guide for the construction of the object recognition rule network. To reduce the complexity
of the graph morphism problem, appropriate decomposition of AHR’s is desirable. Since in
each of the comparison processes only one characteristic view of the object features will be
involved, disregard whether the comparison method is based on knowledge-directed search or
on hypergraph morphism; it would be possible to introduce a new set of hyperedges which will
be induced based on various “optimal” characteristic views. We call these subsets of attributed
vertices characteristic view hyperedges. Thus, the model generated can be represented by two
concurrent sets of hyperedges, one based on structural decomposition and the other based on
characteristic decomposition. The intersection of these two hyperedges will yield another set of
hyperedges, each of which is of even smaller size. Hence, the complexity of the graph morphism
problems will be further reduced. The characteristic hyperedges of an object can provide another

piece of domain knowledge in the autonomous construction of the rule network for the knowledge
directed search.

5.8 Hypothesis Refinement and Knowledge-directed Search

Image analysis or interpretation may be viewed as a search of scene interpretation hypotheses

which can be expressed as the possible location and orientation of modelled objects within the

3-D scene. Hypothesis refinement attempt to reduce the search space by conducting all search

within the context implied by the current scene interpretation. The search context defines the

natural constraints on object position relative to one or more surfaces in the 3-D environient.
Scene interpretation consists of two processing stages given below.

1. Establish the initial scene interpretation and camera viewpoints

The position of each camera relative to the coordinate system of the scene interpretation
is established through object recognition under unconstraint viewing conditions or may be
obtained through a priori knowledge of the camera position relative to the support surface.

2. Refine scene interpretation with known camera viewpoint

(a) Select (i) a support surface of the current scene interpretation; (ii) an object model
and (iii) an appropriate support condition for the given task to limit the orientation
of the object relative to the support surface.

(b) For an object model feature, select corresponding image features by filtering accord-
ing to the visibility characteristics defined by the camera viewpoint and support
conditions.

(c) For each model-image feature correspondence calculate the resulting constraints on
object position. Repeat until object position is completely constrained.

(d) Test each object position hypothesis by predicting the location of image features and
testing for a valid match within the position tolerance of the corresponding model
feature.

(e) Update the scene interpretation and obtain the new support surfaces provided by the
identified models.

The success of an analysis depends to a large extent on the ability to efficiently filter features
in the image. Filter capability is determined by the nature of the model and the level of constraint
provided by the support conditions.

77

Calculation of object position is dependent on the quality of the image features and the
nature of the constraints of support conditions. The available constraints simplify calculation
of object position and permit the use of feature with very limited information content (for
example, under restricted support conditions, a single edge feature can completely constrain
object position).

The procedure for testing a model hypothesis accommodates for the measurement accuracy
of each feature of the object model and can directly access image data to bypass errors in low
level feature detection. The object model also defines the conditions necessary for creating new
support surfaces.

The process of exhaustively searching all model position hypotheses under all possible sup-
port conditions is maintained through the use of a control network. Each stage of the analysis is
guided by the search contexrt which defines the current scene interpretation and assumed search
constraints.

Figure 6 illustrates how the support condition of an object could impose possible constraints
of model features. Figure 7 demonstrates how such constraints can be used to define a filter
which is able to extract the desired features under the hypothesized view point of the camera
and the support conditions of the objects.

Flat support | Inclined support f Free orientation
Herdsarial | Horizontal ; | Hon:to::gnj. | sgiag
. t [[arientation
orientation onenaion o e . e
7\ il
1 \ 1 ‘l"‘_f_,--"'
| P ! J 7 \ o/ ’ | .
/A — Ay F— : /{;x_,./ Rotation
| q-»_._/*/—’sucpoﬂ | LZ‘;T_I»_/-, | /-‘/J |
[' surface " et
Desired feature Elevauon angle | Elevation angle

onemntation of Horizontal | . ‘Elevation 3n;!¢3\~fa',/ |
desired image PUOERON e ;
feature:-. ", oh

AR TR | e e
| | =

Figure 6: Use of support conditions to select image features.

The process of refining an interpretation hypothesis can generally be described by an ordered
sequence of well-defined steps or stages. In actual practice, processing is more complex. Input
to the systems may consist of multiple images or viewpoints, and additional workspaces may be
defined with multiple object models and refinement strategies. An analysis of the broad range
of possibilities is managed through a knowledge-directed search. The search is directed by the
knowledge or context of the task or environment. This is similar in spirit to the “knowledge-
directed image analysis” of Ballard, Brown and Feldman [3] in which image understanding was
directed by a search query from the person using the system. The knowledge-directed search is
guided by a rule network consisting of a network of rule nodes. Each step by step refinement
process, or refinement strategy, is represented as a path through a set of nodes in the network.

78

Candidate image

features for given

constraint conditions
Flat Support

Desired

model

feature
Height:

25.0 mm L.
Orientation:

+/- 50
Length:
2010 120%

Figure 7: Selection of candidate image features.

At each step of the refinement strategy, new interpretation hypotheses are produced. Such
hypotheses determine the constraints on the object position and specify an assumed correspon-
dence hetween model and image features. The refinement of a new hypothesis is dependent on
(i) the search rules (or processes) and domain knowledge associated with the rule node of the
search path, (ii) the assumed model, feature correspondences, and position constraints of the
current hypothesis (referred to as the context of the search), and (iii) the ohserved data that
is selected to infer a more precise characterization of the hypothesis. The knowledge-directed
search represents all such information as a set of search activations (Figure 8).

: Succession
Search begins at .
initiation nodes arcs determine
the order of

application of
the rule nodes

! 7
=~ Search activations idenu?
observed data, a rule noae,

Rule Network ~ 2ndthecontextofthe search. Aphoan/ed Data

Figure 8: Rule Network and Search Activations

79

Tach search activation is a relation that uniquely associates a node of the rule network, a
set of observed data, and the context of the search.

Each node is an instance of a class of rule nodes which perform a specific task (e.g. acquire
an image, detect image features or specify an object model, constraint and refinement strategy).
The rule node classes employed in the present system are listed in Table 1.

Image Acquisition Obtain image from specified source (camera or disk file} and set camera param-

eters (focal length, imaging plane, focus setting).

Line Detection Obtain line features according to specified limitations (line length, contrast,

straightness, resolution).

Camera Position Obtain camera position and orientation relative to the position reference.
Feature Detection Obtain image features (line end points and corner features).
Model Definition Define 3-D object model and interpretation constraints.

Hypothesis Refinement | Refine object position and orientation to verify p;ossible hypotheses.

System Control Select appropriate search strategies and object models. Construct a consistent

world model. Interact with other processes.

Model Editor Edit object models and examine the current scene interpretation. Obtain visual
measurement of 3-D object dimensions. Interpret constraint conditions and

define image filters for 3-D features.

Table 1: Rule Node Classes

Each class has an associated set of processes and defined data structure for the input search
context. Each instance of a rule node acts on the input context and observed data to produce
any number of ocutput context records. In addition, each instance of a rule node has a private
internal memory to record specific parameters of the instantiation of the rule node or to compile
a history of results or information acquired.

As context information is transmitted through the network, additional information is sup-
plied by each node to eventually provide an interpretation of the world viewed by the various
cameras of the vision system.

The general structure of the rule network is illustrated in Figure 9. The network layout is
flexible. Any number of instances of each class of node may be defined. For example, there may
be any number of image nodes, each image can be assigned specialized edge or feature detectors,
and various models or refinement strategies may be defined.

5.9 System Implementation

PAMI Group’s current vision system based on the knowledge-directed search provides analysis of
single or multiple perspective images to locate parts visible in the workspace of a robot workcell.
In its present configuration, the system consists of a SUN 3/160 workstation, a Matrox video

80

Figure 9: Structure of Rule Network

frame grabber, and from one to three SONY CCD video cameras. The system has access
to a PUMA 260 and a Universal Machine Intelligence RTX robot arm. FEach digitized video
frame can be directly accessed by programs running on the SUN workstation. Approximately
ten 512x480 images may be acquired each second. No additional special purpose hardware
is required. Image processing, feature detection, and analysis are implemented in software in
portable ‘C’ code and can be run on various computer systems (without modification on systems
supporting the X Window graphics environment [40]). The system is capable of processing
multiple camera/viewpoint input in a few seconds.

6 Applications

In this section, we present a number of experiments which were set up to demonstrate the poten-
tial and technical feasibility of the developed robot vision knowledge system in manufacturing
and space environment. Most of these results are taken from [61,28].

The first example illustrates the use of visual guidance for robotic assembly. In this stage
of the assembly, the arm must place the top casing of the motor onto the core winding and
over the motor shaft. To achieve this task the system has been supplied with models of the

81

motor casing and the partially assembled motor. Manipulation of objects is specified relative to
the coordinate systems of the object models without concern for the absolute position of each
object. For example, the required assembly task is expressed by the command shown below.

pickup (from ((motor top)) to (motor base) offset (0 0 5 0 1 0))

The offset specifies the position and orientation of the motor top relative to the motor base.
The method used to grasp the motor top is automatically derived from the model definition.

Figure 10 (a) is the initial view of the scene. The motor components may be placed any-
where within the scene, although it is assumed that they have the correct vertical alignment for
assembly. Figures 10 (b) and 10 (c) show the scene interpretation from the original viewpoint
and as it would appear viewed from above the workspace (a view normally obscured by the
position of the arm).!

Figure 10 (d) illustrates the actual assembly of the motor. Figure 10 (e) is the corresponding
interpretation of the scene verifying correct assembly of the motor. Note the narrow tolerance
between the motor shaft and upper casing—position error must be less than 2mm for successful
assembly. Figure 10 (f) demonstrates the interpretation of a scene resulting from an assembly
error. Detection of each object requires a few hundred milliseconds of processing time with 1.3
seconds required to complete analysis of the initial scene. Edge detection and calculation of
camera position require an additional 2.5 to 3 seconds of processing time for each image. Note
that errors in the absolute range due to inaccurate estimate of the camera focal length or other

factors do not have an impact on the accuracy of assembly as all measurements are relative to
the reference cross pattern.

The second example illustrates integration of multiple camera input shown in Figures 11 (a)
and 11 (b). A mirror placed in the workspace provides an additional view of the scene. The
mirror is purposely inclined relative to the table surface so that reflections of symmetrical objects
are not mistaken for objects behind or ‘inside’ the mirror’s surface. Although not shown, the
position target was initially displayed to calibrate the positions of each camera. Consequently, it
is possible to integrate the scene interpretations. (Note that the target provides the reference for
the mirror image—it is not necessary to identify the actual mirror which produces the image.)

The interpretation of each image as shown from the original viewpoints are illustrated in
Figures 11 (c) and 11 (d). Note the detection of the block hidden by the stacked block and
cassette case and the detection of the transparent cassette case partially hidden by the box and
only clearly visible in the mirror image. Figures 11 (e) and 11 (f) show an overhead view of
the scene interpretation and a view from the opposite side of the workspace (as viewed from
‘behind’ or ‘through’ the mirror). Note that the mirror itself is not detected as no model of it
is provided.

The final example is concerned with an error recovery task in printed circuit board assembly.
An image of a printed circuit board is examined to test for improperly inserted components.
Since the board is viewed from the side, as shown in Figure 12 (a), any insertion errors can
be easily detected. Figures 12 (b) and 12 (c) show the scene interpretation from the original
viewpoint and from a position above the board. Note that since flat support conditions are
assumed, the position error appears as a change in horizontal orientation (shown more clearly in
Figure 12 (d)). Given the available image resolution, the actual orientation cannot be accurately
determined (the assumed hypothesis matches the model features precisely); however, the precise
location could be obtained from knowledge of the true horizontal orientation and use of inclined
support conditions.

!The object model is superimposed on the detected edges and identified by the object model name. All lines
of the object model are shown giving the effect of a wireframe or transparent object.

82

(a) Initial view of workspace (b) Interpretation of initial scene

o a2 Rt b o B

[

1

]

4

[}

I

L}

*

+

1

|

]
“r1a-

le b b d elele L 4 dala

motor op

motor base

(e) Interpretation of final scene (f) Scene with assembly error

Figure 10: Assembly task

ol La N ZJI_E})I

83

-''-'cassette case

2436

(e) View ‘through’ mirror (f) Overhead view

Figure 11: Integration of multiple viewpoints.

ol Lel Zyl_i}bl

84

’ jpogesoll ——
hooanaod)

\\1

QUUDUDE \

| Dﬂﬂﬂﬂﬂﬂﬂ \
igooooddd

gooooaon

uuaunuum umaoumuu
____-ﬂ===‘"'—.—‘:

(b) Scene Interpretation

Elrror in chip
= alignment
JI/ '

{c) Overhead View (d) Position Emror

Figure 12: Inspection of printed circuit board by a 3-D vision system.

\

il DGDDGEIDEH' n\

g&\

85

6.1 A Vision Based Local Path Generation

In this example, we demonstrate how the computer vision system is involved in generating a
local path for a robot manipulator with obstacle and singularity avoidance capabilities [28].
The path generation system achieves singularities avoidance by establishing proper bounds for
the rate of change of the Jacobian matrix representing the transformation between the joint
speeds and the end effector Cartesian speed. These bounds become additional constraints for
an optimization problem formulated to obtain the optimal path for the rohot manipulator.

The identification and precise location (Figure 13) of industrial parts, components of an
A.C. motor, is accomplished successfully by building up the correct 3-D models using search
strategies to recognize and locate the motor top and the motor base. An unsymmetrical frame
structure (Figure 14) is also built and placed in the workcell as an obstacle in order to provide
an extra test to the path planning algorithm.

86

The experimentation is designed with the model top and motor base located randomly on
the opposite side of the reference pattern which is approximately placed in the centre of the RTX
robot work space. After the reference pattern is located, the frame structure is set between the
motor top and the motor base. The local path planning program gets the position of these
parts and evaluates the path for transporting and placing the motor top on the motor base
bypassing the frame structure. Currently, the obstacle avoidance is implemented under the
assumption that a Cartesian path with enough clearance from the obstacle would result in an
obstacle free path in configuration space. This assumption is only valid for a specific class of task
environments. The experimentation so far shows that a real time robotic local control package
in a computer based environment is readily available while a real time vision guided robotic local
control package in which the obstacle avoidance trajectories of all joints are properly evaluated
is still in development.

6.2 Tracking of the Grapple Fixture for a Space Robot Arm

To assess the feasibility of visually recognizing and tracking the location of the grapple fix-
ture used by the SSRMS, simple visual tracking experiments with a non-flight mockup of the
fixture were conducted. The experimental goals were to determine the ease and reliability of
identification and the accuracy of the position estimate.

For the conditions of the experiment, it was assumed that only the visual target of the fixture
(black rectangle with circle and post) would necessarily be visible and that the remaining features
of the fixture could be obscured, for example during the final stages of mating the fixture and
SSRMS grappler.

Applying this technique to identification of the grapple fixture results in tracking sequences
as illustrated in Figure 15. The calculated position of the fixture is calculated and provides
the appropriate transform to superimpose the object model over the detected object features.
Identification of the fixture is reliable and requires approximately 2 seconds of processing time
per image on the SUN 3/160 workstation with the majority of processing time devoted to
detection of edge features (without use of specialized image processing hardware).2

Orientation accuracy is sufficient to provide the fixture tip position within 1 cm of the true
position (note the alignment of model and image features of the central pole of the fixture). The
accuracy of the range estimate from the SSRMS grappler to the fixture is determined by the
image resolution and view angle occupied by the fixture, as well as the precision of the specified
camera parameters (pixel dimensions, image center and focal length). Fortunately, greatest
accuracy is required during the final docking stage when the fixture dominates the camera view.
Integration of multiple estimates of object position throughout the tracking sequence could
provide improved accuracy.

7 Conclusions

In this article, we have presented a robust robot vision knowledge system which demonstrates
real-time capability in carrying out robot vision tasks in a robot workcell environment. The
system accepts two types of image input: the range data from laser scanner or structured
lighting and greytone images from CCD Camera. It uses attributed graph and hypergraph as

?Processing time, including feature detection is affected by overall image complexity.

87

Figure 15: Tracking Grapple Fixture

88

representation models of physical objects and rule network as procedural knowledge for effective
recognition and location of 3-D objects. Recognition of 3-D objects can be achieved using
AHR construction from range images; database search for retrieving candidate models; and
hypergraph monomorphism algorithms for establishing structure correspondence between the
images and the object models. If objects of known model are to be recognized, geometric
constraints and domain knowledge can be used in the search of visual features on the perspective
images. We have shown that appropriate use of domain knowledge will greatly reduce the search
time and increase the reliability and accuracy since noise from various sources at various levels
can be excluded in the search and the decision process. We have also described in the paper the
system’s capability of synthesizing 3-D shapes of an object from its AHR’s derived from range
images or from local visual and geometric features extracted from perspective images. The real-
time and reliable performance of the vision system to several industrial tasks have demonstrated
the system’s potential and capacity for industrial application.

References

(1] J.K. Aggarwal and Y.F. Wang. Analysis of a sequence of images using point and line
correspondences. In 1987 IEEE Int’l Conf. Robotics and Automation, pages 1275-1280,
Raleigh, NC, Mar 31-Apr 3 1987.

[2] F.A. Akinniyi, A.K.C. Wong, and D. Stacey. A new algorithm for graph monomorphism
based on the projections of the product graph. IEEE Trans. on Systems, Man and Cyber-
netics, pages 740-751, 1986.

(3] D.H. Ballard, C.M. Brown, and J.A. Feldman. An approach to knowledge-directed image
analysis. Computer Vision Systems, 1978.

[4] Avron Barr and Edward A. Feigenbaum, editors. The Handbook of Artificial Intelligence,
volume 1. HeurisTech Press, Stanford, California, 1981.

[6] C. Berge. Graphs and Hypergraphs. Mathematical Library. North-Holland, London, 1973.

[6] A.T. Berztiss. A backtrack procedure for isomorphism of directed graphs. Journal ACM
20, pages 365-377, 1973.

[7] P.J. Besl and R.C. Jain. Three-dimensional object recognition. Computing Surveys,
17(1):75-145, March 1985. ‘

(8] T.O. Binford. Survey of model-based image analysis systems. Int. J. Robotics Research,
1(1):18-64, 1982.

(9] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. North Holland, New York,
1976.

[10] K.S. Booth. Isomorphism testing for graphs, semigroups, and finite automata are polyno-
mially equivalent problems. SIAM Journal Comput., 7(3):273-279, 1978.

(11] P. Boulanger and M. Rioux. Segmentation of planar and quadric surfaces. National Re-
search Council of Canada, Division of Electrical Engineering.

[12] Ronald J. Brachman. ‘i lied about the trees’ or, defaults and definitions in knowledge
representation. The Al Magazine, pages 80-93, Fall 1985.

89

[13] M.S. Casale and E.L. Stanton. An overview of analytic solid modeling. IEEE Computer
Graphics Applications, 5(2):45-56, 1985.

[14] 1. Chakravarty and H. Freeman. Characteristic views as a basis for 3-d object recognition. In
Society for Photo-Optical Instrumentation Engineers Conference on Robot Vision, volume
336, pages 37-45, Bellingham, Washington, 1982.

[15] J.K. Cheng and T.S. Huang. A subgraph isomorphism algorithm using resolution. Pattern
Recognition, 13(5):371-379, 1981.

[16] R.T. Chin and C.A. Harlow. Automated visual inspection: A survey. IEEE trans on PAMI,
PAMI-4(6):557-573, Nov 1982,

[17] D.G. Corneil and C.C. Gotlieb. An efficient algorithm for graph isomorphism. Journal
ACM, 17(1):51-64, January 1970.

[18] N.J. Deo, J.M. Davis, and R.E. Lord. A new algorithm for digraph isomorphism. BIT,
17:16-30, 1977.

[19] M. Earnshaw, C. Wong, and A.K.C. Wong. Map matching algorithm for points. Techni-
cal report, University of Waterloo, Department of Systems Design Engineering, Waterloo,
Ontario, March 1988.

[20] G. Garibotto and R. Tosini. Description and classification of 3-d objects. In IEEE 6th
International Conference on Pattern Recognition, pages 833-835, New York, 1982.

[21] D.E. Ghahraman, A.K.C. Wong, and T. Au. Graph monomorphism algorithms. IEEE
Trans. of SMC, SMC-10(4):189-197, 1980.

[22] D.E. Ghahraman, A.K.C. Wong, and T. Au. Graph optimal monomorphism algorithm.
IEEE Trans. of SMC, SMC-10(4):181-189, 1980.

[23] W. Havens and A. Mackworth. Representing knowledge of the visual world. IJEEE Com-
puter, pages 90-98, Oct 1983.

[24] S.W. Holland. Consight-i: A vision-control robot system for transferring parts from belt
conveyors. Computer Vision and Sensor Based Robots, pages 81-97, 1979.

25] J.E. Hopcroft and R.E. Tarja.n. Isomorphism of Planar Gmphs, pages 131-152. Plemnn,
P g

[26] T.S. Huang, editor. Image Sequence Processing and Dynamic Scene Analysis. Springer,
Berlin, 1983.

[27] R.P. Kruger and W.B. Thompson. A technical and economic assessment of computer vision

for industrial inspection and robotic assembly. In IEEE 69, number 12, pages 1524-1538,
Dec 1981.

[28] R.V. Mayorga, K.S. Ma, and A.K.C. Wong. A local path generation method for robot
manipulators in a computer vision based environment. In Ninth Symposium on Engineering
Applications of Mechanics Conference, London, Ontario, May 1988.

[29] D.J. Meagher. Geometric modelling using octree encoding. Computer Graphics and Image
Processing, 19(2):129-147, 1981.

90

[30] R.K. Miller. 3-d machine vision. SEAI Technical Publications, 1984.

[31] P.G. Mulgaonkar, L.G. Shapiro, and R.M. Haralick. Recognizing three-dimensional objects
from single perspective views using geometric and relational reasoning. In IEEE Conference
on Pattern Recognition and Image Processing, pages 479-484, Jun 1982.

[32] J. O’Rourke and N. Badler. Decomposition of three-dimensional objects into spheres. IEEFE
trans on Pattern Analysis and Machine Intelligence, PAMI-1(3):295-305, 1979.

[33] Edgar M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs.
Wiley-Interscience Series in Discrete Mathematics. John Wiley and Sons, New York, 1985.

[34] M.R. Quillian. Semantic Memory, pages 354-402. MIT Press, Cambridge, Mass., 1968.

[35] H. Raafat and A.K.C. Wong. A texture information-directed region growing algorithm
for image segmentation and region classification. Computer Vision, Graphics, and Image
Processing, 43:1-21, 1988.

[36] R.C. Read and D.G. Corneil. The graph isomorphism disease. J. Graph Theory, 1:339-369,
1977.

[37] A. Rosenfeld. Image analysis: Problems, progress, and prospects. Pattern Recognition,
17(1):3-12, 1984.

[38] K.C. Rueb and A.K.C. Wong. Visual part identification and location in a robot workecell.
International Journal of Machine Tools and Manufacture, Special Supplement on Robotics
and Artificial Intelligence, 28(3):235-249, 1988.

[39] P.K. Sahoo, S. Soltani, and A.K.C. Wong. A survey of thresholding techniques. Computer
Vision, Graphics and I'mage Processing, 41:233-260, 1988,

[40] R.W. Scheifler and J. Gettys. The x window system. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, Jul 1986.

[41] D.C. Schmidt and L.E. Druffel. A fast backtracking algorithm to test directed graphs for
isomorphism using distance matrix. J. ACM, 23:433-445, 1976.

[42] H.E. Schroeder. Practical illumination concept and technique for machine vision applica-
tions. In SME Robots 8, pages 27-43, Detroit, MI, Jun 1984.

[43] R.B. Schudy and D.H. Ballard. Model-detection of cardiac chambers in ultra-sound images.
Technical report, Computer Science Department, University of Rochester, Rochester, NY,
1978. ref no. TR-12.

[44] S.A. Shafer and T. Kanade. The theory of straight homogenous generalized cylinders and
taxonomy of generalized cylinders. Technical report, Carnegie-Mellon University, Pitts-
burgh, PA, 1983. ref no. CMU-CS-83-105.

[45] S.C. Shapiro and G.H. Woodmansee. A net-structure-based relational question answerer.
In Proc. IICAI, pages 325-346, Los Altos, Calif., 1971. Morgan Kaufmann.

[46] H.C. Shen and A.K.C. Wong. Generalized texture representation and metric. Computer
Vision, Graphics and Image Processing, 23:187-206, 1983.

91

47] B.I1 Soroka and R.K. Bajcsy. A program for describing complex 3-d objects using gener-
g g g8
alized cylinders as primitives. In Pattern Recognition and Image Processing Conference,
pages 331-339, New York, 1978.

[48] C. Thorpe and S. Shafer. Correspondence in line drawings of multiple views of objects. In
International Joint Conference on Artificial Intelligence, pages 959-965, 1983.

[49] W.H. Tsai and K.S. Fu. Error correcting isomorphisms of attributed relational graphs for
pattern analysis. IEEE Trans. on SMC, SMC-9(12):757-768, 1979.

[50] K.J. Udupa and I.S.N. Murthy. New concepts for three-dimensional shape analysis. IEEE
trans on Computers, C-26(10):1043-1049, 1977.

[51] J.R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23:31-42, 1976.

[52] S. Umeyama and T. Kasvand. A new algorithm for point and plane pattern matching.
National Research Council Canada, (28455), Nov 1987.

(63] T.P. Wallace and P.A. Wintz. An efficient three-dimensional aircraft recognition algorithm
using normalized former descriptions. Computer Graphics Image Processing, 13:96-126,
1980.

[54] P.M. Will and K.S. Pennington. Grid coding: A preprocessing technique for robot and
machine vision. Artificial Intelligence, 2:319-329, 1971.

[55] A.P. Witkin. Recovering surface shape and orientation from texture. Artificial Intelligence,
17:17-45, 1981.

[56] A.K.C. Wong. Knowledge representation for robot vision and path planning using at-
tributed graphs and hypergraphs. NATO Advanced Study Institute Series: Machine Intel-
ligence and Knowledge Engineering for Robotics Application, pages 113-144, 1987.

[57] A.K.C. Wong. Structural pattern recognition: A random graph approach. Pattern Recogni-
tion Theory and Applications, NATO ASI Series, Computer and Systems Sciences, 30:323—
346, 1987.

[58] A.K.C. Wong. Trends and developments in computer vision. In IEEE Asian Electronic
Conference 1987, pages 707-714, 1987.

[69] A.K.C. Wong and F.A. Akinniyi. A net based algorithm for largest common subgraph
isomorphism. In 1983 International Conference on Systems, Man and Cybernetics, pages
197-201, 1983.

[60] A.K.C. Wong and S.W. Lu. Representation of 3-d objects by attributed hypergraphs for
computer vision. In 1983 International Conference on Systems, Man and Cybernetics, pages
49-53, 1983.

[61] A.K.C. Wong and S.W. Lu. Recognition and knowledge synthesis of 3-d objects based on
attributed hypergraphs. IEEE Trans. on PAMI, 1989.

[62] A.K.C. Wong, S.W. Lu, and M. Rioux. Recognition of 3-d objects in range images by
attributed hypergraph monomorphism and synthesis. In First [FAC Symposium on Robot
Control, pages 389-394, Barcelona, Spain, November 1985.

92

[63] A.K.C. Wong and R. Salay. An algorithm for constellation matching. In Eighth Interna-
tional Conference on Pattern Recognition, pages 546-554, Paris, France, October 1986.

[64] A.K.C. Wong and M.L. You. Entropy and distance of random grahps with application to
structural pattern recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
7(5):599-609, September 1985.

[65] M.L. You and A.K.C. Wong. An algorithm for graph optimal isomorphism. In Seventh
International Conference on Pattern Recognition, pages 316-319, 1984,

ol La N ZJI_ELI

Algorithm for Visible Surface Pattern Generation
- a Tool for 3D Object Recognition

J. Majumdar, P. Levi, U. Rembold

Forschungszentrum Informatik, Haid- und Neu-Strafle 10-14,
D-7500 Karlsruhe, F.R.G.

Abstract

This paper describes useful algorithms, developed for model-based object recognition, which happens to
be one of the basic problems in the area of Robot Vision research. The important vision-oriented
functions derived through these algorithms are: (i) the generation of the3D convex hull of an object to
calculate its feasible stable positions, (ii) the determination of the pattern of the visible surfaces in the
orthographic projection and finally (iii) the extraction of characteristic features invariant to the object
rotation. The parameters will be used for a consequent matching phase. The feasibility of the algorithm is
demonstrated through several sample objects.

1 Introduction

In order to realise a flexible assembly system, an industrial robot must be able to interact with its
environment through visual information. This paper describes the development of a CAD-based machine
vision system. The present system, in principle, generates several vision-oriented functions which enable
one to recognise the pattern of visible surfaces of an object in the orthographic projection for each of its
stable positions on the worktable.

A flexible system for 3D object recognition necessitates the development of an effective modelling tool
suitable for a general description of 3D objects. Geometric modelling is used in CAD/CAM research for
easy model generation, graphic visualisation and for the support of the vision analysis.

Advantage of using CAD modellers are:

. an unambiguous representation of 3D objects is possible

NATO ASI Series, Vol. F 66
Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

94

. object models generated by a CAD modeller, after proper transformation, may be used for the
evaluation of pictures of an object

. the recognition and analysis of an object is possible without physically scanning the real object.

A €AD-based machine vision system thus provides information required for the automatic analysis of
camera data.

A survey of various model-based recognition systems is reported in [1]. Baumgart [2] developed a 3-D
geometric modelling system (GEOMED) for the application to computer vision. Hermen[3] established
the three-dimensional structure of the visible surfaces of an object from a single view by assuming the
object in the shape of a polyhedron which has perpendicular adjacent faces and edges. Koshikawa et al
[4] have used a solid modeller (GEOMAP) for finding the stable position of the object from observed
surface normals. Bolles et al [5] have designed a CAD model based vision system (3DPO) for advanced
research on Robot Vision. Henderson et al [6] have used a Computer Aided Geometric Design (CAGD)
system for visual recognition and manipulation of an object.

In the present work, the objects are modelled using a CAD system called ROMULUS, which offers the
facilities of defining and manipulating models of 3D objects. Bodies are created in ROMULUS using
standard shapes such as cubes, blocks, wedges, cones, cylinders etc. A complex object is constructed by
binary operations such as union, subtraction or intersection between the bodies already defined. The
transformation is provided to the system through a translation, rotation or change of the size of a body.
The modeller is equipped with a CAD/CAM interface whose format is called FEMGEN (Finite Element
Mesh GENerator). It is used to access the geometrical data from the CAD system. A description of the
FEMGEN format is available in [7]. The geometrical data in the FEMGEN format consists of vertices,
edges and faces of the object in the 3D space.

The vertex points of the object in the 3D space are given by the coordinates (x,y,z) with respect to a
world coordinate system. Each linear edge of the object is described as a pair of points e=[p1,p2], where
pl is referred to as the starting point and p2 as the end point of the edge. Each curved edge of the object is
described as a circular arc consisting of three points e=[p1,p2,c], where pl is the starting point, p2 is the
end point and c is the center point of the arc. Each surface of the object is described as a sequence of
edges f=[el,e2,e3,e4] which defines a closed, non-self intersecting chain of linear and curved line
segments.

The generated vision-oriented functions with the above mentioned data structure as input are;

1. Generation of the 3D convex hull
2. Generation of the visible surface pattern

95

3. Extraction of the characteristic features

2 Algorithms

The entire algorithm for generating these vision-oriented functions are subdivided into two parts - the
preprocessing part and the main part as shown in Fig. 1.

In the preprocessing part, the input data (vertex, edge and face list of the object) is read and the boundary
and the internal regions of each of the object are identified. Thereafter, the curved edges and faces are
interpolated to polygonal form. In the main part, the 3D convex hull of the object is first calculated and
consequently the list of stable positions is obtained from the face list of the convex hull. For each stable
position of the object on the worktable, the pattern of visible surfaces for an orthoghaphic projection is
generated and the characteristic features are extracted from this pattern for use in a subsequent matching
stage.

Preprocessing part

1: [make_regions] Construction of a closed polygonal chain of the faces and identification of the
boundary and internal regions.
2: [plane_shapes]-Conversion of the body into a polygonal form by interpolation of the curved

edges and subdivision of curved faces into pieces of plane faces (see Fig. 2).

2.1: Replace all the curved edges by piecewise linear segments.

2.2; Transform the curved faces into polyhedra by joining the corresponding points
representing the curved edges.

Main part

1: [convex hull_3D] Generation of the 3D convex hull of the object.
2 [stable_position] Generation of the list of stable positions.

3: For each stable position:

[projection] Project all the faces of the object on the worktable and determine the
resulting total face.

[write_features] Determine the characteristic features of this total face in the output data.

The following sections describe the detailed algorithm for each task of the main part.

96

2.1 Algorithm 1 [convex hull-3D]

Input: Set of points defining the object in 3D space.
Output: Convex hull defined by its faces and edges.
1: [initial_face] Select the initial face F (see Fig. 3).

1.1: Search for a point A with the maximum value of z-coordinate from the given set of
points.

1.2: Define a point H on the plane z = z max (H= A).

1.3: Rotate the plane z = z max about the axis AH until it hits the first point B from the
given set of points.

1.4: The plane containing A & B is now rotated about AB until it hits a third point C which
also belongs to the given set of points.

1.5: Determine all the points of the set which lie on the plane containing the points A, B &
C.

1.6: At this stage, apply the 2D convex hull algorithm proposed by Andersen [8] to
generate the resulting convex hull (polygonal chain) for all the points of the set lying on
this plane.

1.7: The convex hull so obtained is the desired initial face.

For all the edges k of the face F, if k is not in storage, store k as unmarked, otherwise mark k.
3: [face_calculation] For all unmarked edges k™ of F, calculate a second face F'to k’and F (see
Figs 4(a) & (b)).

3.1:

Calculate the angle o between the face F and the other faces (eg., p1, p2, p” is one of
such face).

3.2 Select p” so that o is minimum.
3.3: Calculate the equation of the plane containing the points p1, p2 & p".
3.4: Determine all the points that satisfy the equation of this plane.
3.5: Apply the 2D convex hull algorithm for the resulting set of points
3.6: The convex hull so obtained is the new face F".

4: Return to step 2 recursively.

The algorithm terminates only when marked edges are in storage, since in that case no more recursive call
takes place. An edge is said to be marked when it is calculated from two different faces and both the faces
containing this edge is found. Declaring all the edges as marked signifies that each edge is formed as an
intersection of the two adjoining faces of the desired convex polygon. Thus the convex polygon is fully
defined through its edges and faces.

97

2.2 Algorithm 2 [stable-position]

Input:

List of the faces of the convex hull.

Output: List of stable positions of the object.

2.3

Input:

For each face of the convex hull on the worktable, use the transformation matrix (linear and
rotational transformation) to calculate the new coordinates of all its vertex points.

Check for a stable position.

If the projection of the center of gravity lies within the bounded polygon of the convex hull face
on the worktable, the position is stable and otherwise the position is not stable.

Algorithm 3 [projection]

Object B in a stable position with the transformation matrix.

Output: Pattern of visible surfaces after projection.

This algorithm may be subdivided into the following steps:

1:

[transform_object] Calculate the new coordinates of all the vertex points of the object using the
transformation matrix corresponding to the stable position.
[orient_object]
2.1: Forall the faces F of B, if the face F is at right angles to the worktable then:
+ Remove the face F from the face list of B.
« Insert the face F in the list of the faces of B which are at right angles to the
worktable.
2.2: For all the remaining faces with their internal regions:
+ Determine the starting point (smallest y-coordinate which has smallest x-coordinate)
and orient the polygonal chain of the face in a clockwise direction.
+ Determine the maximum stretching of the face in the x- and y-direction.
« Determine the equation of all the edges of this face. An illustrative example is shown
in Fig. 5.
[intersect_object]
3.1: Construct a linear list 1 with the boundary and the internal region of all the faces.
3.2: For all pairs of the faces F1 and F2 from the list I:
+ If the maximumi stretching of F1 and F2 intersect with themselves, test with each
edge of F1 and each edge of F2, whether an intersection point exists. If so,
subdivide the edge at the point of intersection (see Fig. 6).

98

[sort_altitude]
4.1: Set F2 = face list of b, set face list of B = empty.
4.2: Solong F2 is not empty:
» Search the face F1 from the face list F2 so that no other face from the face list F2

lies above the face F1 (see Fig. 7).

(i) If a point v of F1 has the same value of x and y coordinate as the point w from
F2 but has a higher value of z-coordinate, then the face F1 lies above the face
F2 (Fig. 7(a)).

(ii) If a point v of F1 has a value of z-coordinate higher than that of a point w in
face F2 but F1 lies within the boundary of F2, then the face F1 lies above the
face F2 (Fig. 7(b)).

(iii) If a point v of F1 has a higher value of z-coordinate than that of a point w in
face F2 but F2 lies within the boundary of F1, then the face F1 lies above the
face F2(Fig. 7(c)).

« Remove the face F1 from the face list F2 and insert F1 as the first element of the

face list of B.

[visible_faces] Replace all the faces by its visible parts through replacement of their visible
portions only when the other parts are covered by the overlapping faces (see Fig. 8).
5.1: With all the faces F2 from face list of B:

« With all the faces F1 which are successor of F2:

(i) IfFl lies within the boundary of F2, remove F1 from the face list and proceed
to the next face.

@ii) Replace the boundary of the face F1 and all its internal regions by its visible
parts through replacement by their visible portions only when the other parts
are covered by the overlapping faces.

(iii) If F2 lies within the boundary of F1, insert F2 as the internal region of F1,
remove F2 from the face list and proceed to the next F2.

[unit_faces] Join all the visible parts of the faces from the cluster into a total face (see Fig. 9).
6.1: With all pairs of face F1, F2 from the face list of B:
« If the faces F1 and F2 have one common edge, then perform the following steps:

(1) Insert the boundary of F1 to the boundary of F2 and the internal regions of F1
to the internal region of F2.

(ii) Remove F1 from the face list.

6.2: SetF1 = face list of B without the first face. Set boundary of the total face = boundary
of the first face. Insert the first face as the internal region of the total face.
6.3: So long F1 is not empty:
¢ Search a face F2 from the face list F1 so that it touches the boundary of the total
face.

99
+ Insert the boundary of the face F2 to the boundary of the total face.
« Insert the face F2 as the internal region of the total face.
» Remove F2 from the face list of F1.

2.4 Algorithm 4 [write-features]

Input: Visible surface pattern after projection.
Output: List of the characteristic features extracted.

1: Determine the perimeter of the total face and calculate the length of each edge in a normalised
form with respect to the perimeter.
2: Output the features of the total face.

« Determine the lenght of all the edges.

+ Determine the face area .

* Merge the edges which are in contact with each other.
+ Determine the type of face (linear, curved or mixed).
+ Determine the perimeter of the face.

+ Output the type and the length of all the edges.

+ OQutput the features of all the internal regions.

3 An application Example

The above algorithm was implemented in C language in a Micro VAX II workstation. The results,
depicted in Figs 10 to 13, show the convex hull, the possible stable positions and the visible surface
pattern corresponding to different stable positions of some sample objects.

Acknowledgement

This work was carried out at the Institute of Realtime Computer Systems and Robotics (Prof.-Dr.-Ing. U.
Rembold and Prof. Dr.-Ing. R. Dillmann) of the University of Karlsruhe, and at the research group "Technic
Expert Systems and Robotics" (Prof. Dr.-Ing. U. Rembold and Prof. Dr. P. Levi) of the Forschungszentrum.
Informatik, Karlsruhe. The work was supported by the Deutsche Forschungsgemeinschaft.

100

References

[1] Chin, R. T. and Dyer, C. R., "Model-Based Recognition in Robot Vision", Computing Surveys,
Vol. 18, No. 1 (March 1986).

[2] Baumgart, B. G., "Geometric Modelling for Computer Vision", Technical Report AIM-249,
STANCS-74-463, Computer Science Department, Stanford University (October 1974).

[3] Hermen, M., "Representation and Incremental Construction of a Three-Dimensional Scene Model”,
Carnegie-Mellon University Report, CMU-CS-85-103 (1985).

[4] Koshikawa, K. and Shiral, Y., "A 3-D Modeler for Vision Reserach", Proceedings of the
International Conference on Advanced Robotics, Tokyo, Japan (September 1985).

[5] Bolles, R. C., Horaud, P., "3DPO : A Three-dimensional Part Orientation System", Robotics
Research, Vol. 5, No. 3 (1986). i

[6] Henderson, T., Hansen, C., Samal, A., Ho, C. C., Bhanu, B., "CAGD-Based 3D Visual
Recognition" Proc ICPR, Paris, pp.230-232 (1986).

[7] Romulus Users Manual, Shape Data Ltd. (1984).

[8] Anderson, K. R., "A Reevaluation of an Efficient Algorithm for determining the Convex hull of a
Finite Planar Set", IPL, Vol. 7, p. 53 (1978).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

101

Preprocessing
part

Identification of
boundary
and internal region
(make_regions)

FEMGEN
CAD-System
ROMULUS

(plane_shapes)

.
.

.

N Calculation of interpolation
. data

'

.

Caicuiation of 3D
convex hull
(convex hull_3D)

Caiculotion of stable position
(stable_position)

For each stable position:

Determine the projection
Feature (projection)

extraction
Extract the features
(write_features)

Algorithm for generating the vision-oriented functions

— —>

curved edge curved foce
interpoiation interpoiation

Interpolation of the curved face

yd

Calculation of the initial face

Calculation of the face

102

alxsbly+cl=0 a2x+b2y+c2=0

oIx+bdy+c3=0 E2 .
€3

y max
£2 El
ymin

E3

xrnn x max

O o - RS
| EIEEET |ory ~ EEEEE

| b min |y max

Fig.5 Orientation of the face

El ES
-

£ F2

ES t7

rout Output

|
EL] ~ [[EEEIE [13 ~ [EEEEE
»@]+ EEEEE
|

Fig.6 Intersection of the two faces

103

7
ay

/7T T

Q) ()

F

©

Fig. 7 Sorting the faces of the object according to their height from the worktable

Input

/F—/

Output

Fig. 8 Replacement of the faces by their visible parts

ol Lel Zyl_i}bl

104

input Output
FO E6
E&
o s €2 €S
E3 E3
F1 F2 €7 E1 F2 €7
£l €4 El £

E8 E8

' !
F-EE@EE [o]-DEEBEEEE
i .

[~HEEEE [f]~E=EEE
' !
[f2] » EEEEE
'

Fig. 9 Union of visible surfaces of an object

Convex hull of the
object

.\/_\\(/
o Object2 o >
\ %

Fig. 10 Some sample objects with their convex hull

ol LA Ejl_ﬂbl

105

N e T

|

Fig. 11 Sample object with its possibie stable positions and
corresponding visible surface pattern

N
0

O

Fig. 12 Sample object with its possible stable positions
and corresponding visible surface pattern

106

%

©

Fig. 13 Sample object with its possible stable positions
and corresponding visible surface pattern

BYESY.] 1 N

KNOWLEDGE-BASED ROBOT WORKSTATION: SUPERVISOR DESIGN

Robert B. Kelley
Electrical, Computer, and Systems Engineering Department.
Rensselaer Polytechnic Institute
Troy, NY 12180

I. INTRODUCTION

There are several problems currently inhibiting the growth of automation in industry. In
particular, the growing interest in the application of robots to assembly tasks is being limited by
the way such tasks are programmed and executed. Current robotic assembly systems force an
exact, detailed description of the task to be executed. To perform a given assembly task, the
detailed actions of the robot, as well as the successive positions and orientations of the gripper,
must be specified. In addition, the work environment of the robot and the state of the objects in
it must be completely controlled for the robot to successfully accomplish its task. These
requirements could be reduced by the use of a variety of sensors and, in this way, allow the
degree of uncertainty in the environment to be increased. Nevertheless, the use of sensors alone
could also make the programming phase more difficult.

The basis of this problem stems is the lack of integration of the workstation environment
model into the system design which forces the states of objects, manipulators and grippers to be
completely controlled. Such an approach often prevents the system from recovering from
unplanned events or errors that might occur during task execution. Further, the task plan is
entered either through a teach-box or a robot programming language such as VAL. The entry
requires considerable effort and skill on the part of the programmer. If any execution steps must
be modified, this tedious programming task must be completely repeated in most cases.

This leads naturally to the consideration of intelligent, knowledge-based robot workstations
which have integrated planning and sensing capabilities and allow for both automatically
programming the robot and successfully executing the assembly task in spite of uncertainties in
the task environment. Such a robotic system would interface with the user at a level that allows
task plans to be entered in terms of parts to be moved and mated. It would also allow organized,
automatic recovery from unexpected, non-deterministic deviations encountered during execution
through the maintenance of a current environmental model. A system possessing these
capabilities would greatly promote flexible knowledge-based automation because it would
provide a very high level user interface and would not require frequent operator intervention.
Systems attempting to solve some of these problems are described in the literature [Chochon
and Alami 1986; Vijaykumar and Arbib 1987; Angermuller and Hardeck, 1987; Clermont,
Hermant and Gaspart 1986]. However, most of the proposed intelligent robotic systems are

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Springer-Verlag Berlin Heidelberg 1991

108

made specific in the early stages of the planning process in the sense that they are tied to some
of the characteristics of the robot and other elements that will carry out the assembly.

In contrast, the goal of a cooperative research effort involving the Institut de Cibernética of
the Universitat Politécnica de Catalunya and the Robotics and Automation Laboratories of the
Rensselaer Polytechnic Institute is to build an automatic programming and supervision robotic
knowledge-based system which is able to transform a symbolic description of an assembly task
and a set of pieces, into a complete, physical assembly. It is a hierarchical knowledge-based
planning and execution system that will allow manipulators and sensors to intelligently perform
industrial assembly tasks in a variety of robotic workstations. Incorporated in this system will
be a sensor-based model of the workstation environment so that deviations from the expected
world model can be sensed and corrected by automatic on-line recovery mechanisms.The
remainder of this article is on the design, implementation and successful testing of one level of
this system, the Supervfsor. The Supervisor is responsible for managing the on-line execution
of a given task plan in a specified workstation. The presentation begins with a summary of the
operating framework and objective followed by an overview of the knowledge-based robotic
system.

II. FRAMEWORK AND OBJECTIVES

The development of such a system requires the identification and solving of major gaps in
current technology and the bringing together of a variety of scientific and technical domains.
Among these are programming and description languages, modeling, planning, motion and
force control, computer vision, sensor fusion and error recovery. Some contributions in these
fields are outlined below and can be found in more detail in some recent papers [Basafiez et al.,
1988; Juan and Paul, 1985, 1986; Ilari, 1987; Ilari and Reyna, 1986; Kelley and Bonner, 1985;
Kelley, 1986; Thomas and Torras, 1988].

The output from this system will be the execution of the desired assembly task in the given
robotic workstation. A variety of manipulators may be used in order to complete the task. For
feedback purposes, the environment will be continuously monitored by sensors which may
include 2D and/or 3D vision systems, gripper based-proximity sensors and tactile arrays,
grasping force sensors, wrist force/torque sensors, etc. By combining manipulation with
abundant sensing, deviations from desired actions and locations can be detected and corrected.

The underlying design approach of this knowledge-based system is the Principle of Least
Commitment. Under this principle, choices are deferred to lower levels of the hierarchy until a
decision is forced to be made in order to continue successful planning and execution of the task.
For éxample, the initial planning level'does not consider specific characteristics of the particular

109

robotic workstation, but relegates these decisions to lower levels in the hierarchy. Also, once
the assembly is mapped to a particular environment, the execution order of the tasks is not
defined until the on-line levels receive the list of tasks to execute. Analogously, the decision
about which sensor to use to get some information at execution time can be postponed, in some
cases, until the moment this information is needed. This design approach provides the system
with greater flexibility and allows it to make a more efficient use of the available resources. The
hierarchical programming and execution system being developed will map user-specified three
dimensional part assembly tasks into various target robotic workstations, and will execute these
tasks efficiently using the manipulators and sensors available in the workstation.

III. KNOWLEDGE-BASED ROBOTIC SYSTEM OVERVIEW

The hierarchical knowledge-based system being designed is presented in Figure 1. This
system was first reported by [Kelley and Bonner 1985], and refined descriptions were
presented in [Moed and Kelley, 1987; Basaiiez et al., 1988; Moed and Kelley 1988]. As seen in
Figure 1, along with the forward planning and execution system, there is a feedback path from
each level to replan or re-execute an assembly if unexpected environmental deviations occur. A
brief description of each component of the system follows:

A. Databases.

DAM: Dynamic Assembly Model contains the geometric description of the current state of
the parts being assembled.

SAD: Static Assembly Database provides the descriptions of parts being assembled in
terms of geometric constraints and sensor based information.

DEM: Dynamic Environment Model provides the current state of all objects in the
workstation in terms of sensor based features.

SED: Static Environment Database contains the initial state of the workstation.

B. Assembly Planner.

The user input to this system is a part-centered description of the desired assembly. This
input describes which parts are to be mated and includes specifications on how the parts should
be joined, in terms of surfaces and features, as well as other geometric relationships between
the objects. One method for achieving this assembly description is through the use of a
Computer Aided Design (CAD) representation of the parts involved in the assembly. By using a
CAD tool as the user interface, an assembly designer would be able to visually manipulate the
desired parts displayed on a video screen to describe the desired assembly. It would no longer

110

be necessary to tediously program the task in a conventional manner, using a language such as
LAMA [Lozano-Perez and Winston, 1977] or AUTOPASS [Lieberman and Wesley, 1977].

DAM SAD DEM SED
DYNAMIC STATIC DYNAMIC STATIC
ASSEMBLY ASSEMBLY ENVIROMENT ENVIRONMENT
MODEL DESCRIPTION MODEL DESCRIPTION
4 'y [y 3
ASSEMBLY
PLANNER <
Difﬁ?tﬂlics
Assembly Plan As:;:lbly
v as Planned
TASK
i PLANNER &
Difficulties
with
Task Plan Task
as Planned
SUPERVISOR -
Status and

INTELLIGENT INTELLIGENT INTELLIGENT "
DEVICE DEVICE e DEVICE
INTERFACE INTERFACE INTERFACE
1 2 n
j ; Commands in T Resultsof Commands
L 4 3 Device-Specific Language in Device-Specific
Language
DEVICE DEVICE ... DEVICE
1 2 n

Figure 1. Knowledge-based robot system architecture.

The assembly planner is an off-line automatic program which geometrically transforms 3D
objects, and plans what must be done to achieve the physical assembly of a part based on part
constraints, and is not concerned with kow the actions are accomplished. Using the SAD, this
input can be translated to describe the specific task in terms of known part features. If a severe
error occurs during task execution which prevents replanning or reexecution by the lower levels
of the hi onsult the DAM, which contains the current state of

111

the assembly, to replan the transformation of parts and try another attempt at successful
execution.

The assembly planner implements a constraint-based model of the tasks, in which object-
centered planning consists of the progressive refinement of the initial high-level assembly
description through the successive application of constraints inherent in the different assembly
operations. Three types of constraints are considered:

1. Shape-matching constraints between the mating parts of the workpieces to
assembled (complementary shape and similar parameters);

2. Constraints on the degrees of freedom (degrees-of-freedom) that define the relative
positions and orientations of workpieces (aligned, coplanar, etc.) [Herve, 1978];
and

3. Constraints of non-intersection between workpieces.

It must be noted that accessibility constraints, those limiting the possible sequences in which
an assembly can be built, are subsumed under the third type above, since they can be handled
by detecting intersections between moving wbrkpieces. Three separate operators have been
developed to deal with the three constraint types, their activity being coordinated by means of a
message-passing control structure. A detailed description of each operator, as well as of the
control structure, is provided in Thomas and Torras [1988]. The procedure sketched is
essentially based on that proposed by Ambler and Popplestone [1975], but conveniently
simplified and refined to increase its efficiency and to permit a uniform treatment of some
special cases.

Non-intersection constraints are used to discard those relative poses of workpieces which,
despite satisfying all shape-matching constraints and constraints on the degrees-of-freedom,
lead to interferences. If the degrees-of-freedom that cause the interference are those
characterizing an assembly operation, then the above constraints should be more precisely
named accessibility constraints, since they deny accessibility for a given assembly sequence.
Two ways of dealing with this type of constraint have been explored. The first requires the
explicit construction of Configuration Space (C-space). The second is based on an implicit
representation of this space. More concretely, the former involves carrying out a uniform sweep
of C-space, which leads to a concise representation of this space as a list of ranges (forbidden
areas) of one variable. The functions and predicates used to define C-obstacle boundaries are
those described in Canny (1986). On the other hand, the implicit way of dealing with C-space is
based on the use of local experts to move along C-boundaries, as proposed by Donald (1984).

A very simple message-passing control structure has been devised to coordinate the activity
of thesthreeroperatorsidescribedrandradequately combine the limitations on the possible solutions

112

imposed by each of them. Essentially, it works by pruning a tree of alternatives through the
application of the most restrictive constraint at each stage. The usual cyclic sequence of operator
application that results is first shape-matching constraints, next degree-of-freedom constraints
and finally non-intersection constraints.

This off-line planner produces an assembly plan which consists of the object
transformations which are required to produce the desired assemblies.

C. Task Planner.

The task planner revises the assembly plan by mapping the object transformations onto
specific available manipulators and sensors which are under the control of on-line Specialists.
The off-line task planner produces a detailed task plan which describes the specific manipulation
and sensing actions which are needed to achieve the geometric assembly. The task planner also
has access to the SED which provides a model of the nominal workstation environment. If an
unrecoverable error occurs during execution of the task, the task planner can consult the DEM,
which contains the current state of the environment, to remap transformations onto other
manipulators. If this is impossible, the task planner requests a new assembly plan from the
assembly planner.

Three basic operations on the pieces in an assembly task have been considered: picking,
movement, and insertion. For each of these operations, a corresponding off-line Specialist has
been designed: the Grasping Specialist, the Trajectory-Finding Specialist, and the Insertion
Specialist.

From a description of the assembly operation to be performed, the Grasping Specialist
generates a list of grasping sites on the workpieces to be assembled. The list is ordered
according to a measure of the grasping site qualities (stability, tolerance to uncertainties, etc.).
The list generation process starts by determining the portion of the workpiece surface that will
remain accessible after the assembly operation has been completed; this is done by performing
some specific subtraction operations on the boundary-based representation of objects provided
by the CAD database. Next, a search for certain types of grasping sites (two parallel faces, face-
edge, face-vertex, etc.) is carried out on this surface, guided by an evaluation function reflecting
the a priori quality of each site. Finally, sensor strategies to verify the correct execution of each
grasp, together with recovery procedures to apply in case of slippage, rotation of the workpiece
within the gripper and other anomalous situations, are included for each site.

Currently, the Trajectory-Finding Specialist solves a simplified version of the general
problem of generating collision-free trajectories for a 6 degree-of-freedom manipulator, namely

113

that involving a non-articulated mobile body in a 2D environment. This is analogous to the
motion of a gripper on a table. The approach followed combines an initial global search, based
on the R-MAT model of free-space [Ilari, 1987], with a subsequent local search in C-space
[Mlari and Reyna, 1986]. The R-MAT model is a subset of the medial axis transform whose
underlying graph is a minimal deformation retract of the Voronoi diagram that can be reached
from every point in free-space through a straight-line motion while preserving the clearance
existing at that point. Depending on the cost function defined upon this graph, different global
paths will be retrieved by a best-first search process. The underlying idea is to supply to the
subsequent local search process the global path most likely to lead to a C-space solution path.
Three heuristics have been built into the local C-space search, one of them guides the evolution
of the translation degrees-of-freedom of the mobile body and the remaining two guide the
evolution of its rotational degrees-of-freedom. A detailed description of the model, the search
procedure and the heuristics implemented can be found in Hari [1987].

The Insertion Specialist determines the fine motion strategy to put the objects in the final
position in the assembled product. Two phases have been distinguished: the approach phase,
before physical contact between the objects is made, and the interaction phase, in which contact
forces and torques are generated. In this latter phase, not only the trajectory, but also active
compliance must be planned. To do this, a generalization of C-space that makes use of an elastic
model of the objects surfaces is proposed. From the generalized C-space, the insertion specialist
determines the fine motion of the gripper, the compliance center and frame, and the force and
torque control references.

The output of the task planner is a set of workstation specific instructions in an
AUTOPASS-like language which specifies the positioning, mating, and sensing of objects in
the workstation. This output is called the task plan.

D. Supervisor.

The Supervisor disburses the task plan in an organized manner to a set of Specialists. The
supervisor is responsible for the real-time management and monitoring of the assembly process,
the on-line coordination of these specialists, and for error recovery. The Supervisor is provided
with the task plan and delegates the specified actions to a group of Specialists. The Supervisor
is responsible for managing the resources of the workstation, which in this case are
manipulators and sensors, but may be extended to include the work volume that a task requires.
To optimize task execution, jobs are scheduled to execute in parallel as resources allow. The
Supervisor contains experimentally determined error recovery routines for inconsistencies that
cannot be handled by the individual Specialists. The Supervisor is also responsible for
maintenénce of the:DEMrand:DAMasithe execution process continues. If an unrecoverable

114

error occurs during this execution, the Supervisor requests a new Task Plan from the Task
Planner.

E. Specialists.

Each Specialist is an on-line, independent process that is expert in performing one type of
task. Each specialist may utilize a variety of devices such as a 6-degree-of-freedom robotic arm,
a stereo vision system, and so forth to accomplish its specific task. Examples of Specialists are:
Gross Motion, Pick, Place, Grasp, 2D Vision Object Detection, 3D Vision Ranging.

Each on-line specialist is a separate process running in a multiprocess environment. This
allows the concurrent parallel execution of several distinct specialists. The execution of the on-
line specialists is monitored and managed by the supervisor as discussed above. Upon receiving
detailed information about the specific task at hand from the supervisor, the on-line specialists
control the necessary manipulators, sensors, and peripherals to complete the operations. Upon
completion, each on-line specialist returns a message which identifies the state of objects in the
environment that have been transformed. If an error occurs, the message contains information
detailing the error conditions, if known. Some local error recovery routines may be executed by
the individual on-line specialist if the deviation is sufficiently simple.

The Specialists communicate with devices (such as sensors and manipulators) in a device
generic language. This language passes though an Intelligent Device Interface (IDI) where it is
translated into device specific commands. By using a generic language, the system can be
transported from one environment to another and the Specialists will not have to be modified. It
is the function of the Intelligent Device Interfaces to translate the generic vocabulary into
commands that the actual workstation device can understand. This method of interfacing allows
different physical devices to be substituted without redesigning the upper levels of the
hierarchy.

With this overview of the complete system description, the features and functions of the
Supervisor can now be examined in depth.

IV. DESIGN OF THE ON-LINE SUPERVISOR

This section presents an initial design of the On-Line Supervisor which provides a structural
base from which a robust knowledge-based system can be derived. In many ways, an on-line
Supervisor of robotic tasks is similar to the Operating System of a typical computer. Both must
be able to manage a host of jobs executing in real time with a finite set of resources. An
Operating System must be able to schedule tasks, allocate resources, and provide

115

communication links. Other added features of an Operating System might include parallel job
execution, fault tolerant design and error reporting. Similarly, the Supervisor design can be
separated into five main functional blocks: Resource Management; Concurrency Detection; Task
Scheduling; Error Recovery; and Interprocess Communication. For the five functional blocks to
work together cohesively, a background automaton was developed which drove the assembly
execution to completion. Also, an interface was designed which provided the ability to create an
off-line task plan.

A. Background Automaton

The workspace of the robotic workstation is separated into various objects each having a
specified set of attributes. As these objects are moved around the workspace, they are
transformed from one state to another. Under normal circumstances, the features of an object
after it has been transformed is the end state that was desired. However, errors may sometimes
occur during execution which must somehow be corrected. For this purpose, an automaton was
created to keep track of the object states, changes, and errors.

Workspace objects can be either parts, tools, platforms, or manipulators. The state of an
object reflects its position and orientation and specifies features which relate to the object in
question. An instance of an object transformation specifies the part/manipulator/tool which is to
be changed in terms of its position, orientation and features as well as the desired end
conditions for this object. Included in the information for manipulators is the motion through
which the object will be transformed.

Objects can be in one of three states, Valid, Unvalidated, or Invalid. A Valid state is
assigned to an object when its position and features match the desired end conditions specified
in the transformation entry. An Invalid state is assigned when there is a deviation from the
desired end conditions after a transformation. An Unvalidated state is assigned to an object
while the object is being transformed. This reflects the fact that during the transformation, the
location of the object is indeterminate.

The automaton in Figure 2 describes the process through which objects in the workspace
are transformed from one state to another. Initially, all objects are in known positions, so each
object is in a Valid state. When an instance of an object transformation is encountered, the
object moves from a Valid state to an Unvalidated state. The object remains in an Unvalidated
state until the transformation is done. When the transformation is completed, sensors determine
whether the object is in the desired location. If the object is located where expected, the object
enters a Valid state once again. If the objects position, orientation or features deviate from the
desired, it.enters an Invalid state. If the object is in an Invalid state, one of a set of error

116

recovery routines is executed in order to correct the object. When one of these routines is
executed, the object is once again transformed and enters an Unvalidated State. This process
continues until either the object enters a Valid state, or all relevant recovery routines are
exhausted. If the latter occurs and the object is still in an Invalid state, the Supervisor requests
assistance from the Task Planner to replan execution from the current workstation state.

Valid State

Transformation l T Validation
Unvalidated
State
Error Error
Encountered Recovery
invalid State

Figure 2. Background transformation state automaton.

B. Task Planner Interface

The Supervisor requires a list of tasks to run in order to begin execution so a simple task
plan language was developed. This language segments tasks into two types: Observations and
Transformations. Observations are tasks which require only sensing, and no motion or
manipulation of objects in the workstation. Transformations are tasks that require manipulation
of objects in the workstation, but may include sensing as well as the manipulation. Finding the
location of an object using a 2D vision system is an example of an Observation task. Grasping a
part with a force of 3 kg is an instance of a Transformation task. Each entry in the task plan
contains the name of the task to be executed, parameters specifying the desired location and
features for a Transformation, or simply Specialist specific parameters required for an
Observation. The task plan entry also includes the objects in the workspace that will be
Transformed/Observed in the process of execution. This last piece of information is required
later by the Concurrency Detector. Figure 3 presents a sample task plan for a Pick/Insert Task.

Upon startup of the current assembly system, the Supervisor reads in the list of tasks which
describe the workstation specific Transformations and Observations that must occur. First, it

117

translates the entries into a form which will drive the automaton, and then assembly execution
begins.

C. Resource Management

Associated with each task is a set of resources available in the workstation that are necessary
for the successful execution of that task. Resources required by a task are manipulators and
sensors that must be used to carry out the execution. For example, the execution of a PICK task
requires the PUMA arm, Gripper, Force Sensor, and Proximity Sensors as resources. The table
of resources required for defined tasks is named the Static Resource Table since the resources
required by a task do not change over time. In general, given a set of Specialists S {sj¢S;
1<i<n} and a set of Resources R {rjeR; 1<j<m]}, then S x R is an n x m matrix where each
row i specifies the set of Resources Ej needed by si {Eje R}. For two Specialists s, s;, if
Ej A Ej = ¢, then the two Specialists do not require the same resources.

The Resource Manager must also keep track of the resources being used during the execution of
the Task Plan. Whenever a task begins execution, the Resource Manager adds the resources
associated with that task to the Dynamic Resource List. Resources not on this list are available
for assignment to tasks that are waiting to run. When a task has completed, its resources are
deallocated from the Dynamic Resource List. Successful management of this Dynamic Resource
List promotes task concurrency, since tasks requiring the same resources will be detected and
prevented from executing simultaneously, thereby avoiding a conflict in the assembly process.

D. Concurrency Detection

Since the Task Plan does not provide an itemized list of jobs that can be run concurrently,
an algorithm must be present in the Supervisor to perform this function. Using conventions
developed in Operating Systems design, a method was created to detect execution parallelism in
a set of tasks.

1) Conditions for Parallel Execution. Given a list of steps in a program, one can determine if
two consecutive steps can be executed in parallel by using Bernstein's Conditions [Bernstein
1966]. These conditions state that given a variable A:

W1(A) A W2(A) = ¢
W1(A) A R2(A) = ¢

R1(A) A W2(A) = ¢

118

where Rj(A) is the Read Set of all variables A for Step i,
and Wi(A) is the Write Set of all variables A for Step i.

TASK TYPE VARIABLES

1. FIND Cage A Observation Cage A
Vision C

2. FIND Cage B Observation CageB
Vision D

3. PICK Cage A Transformation CageA
AmE CageB

4. GROSS MOTION Transformation Cage A
Cage A, Cage B Cage B
ArmE Card 1

5. PLACE Cage B Transformation Cage B
AmE Card 1

Notes:
The task FIND uses 2D vision to locate objects in the workspace.

The task PICK removes a PC card from a card cage with a robotic
manipulator.

The task GROSS MOTION moves the robotic manipulator from one
location to another. .

The task PLACE inserts a PC card into a given card cage.

Figure 3. Sample task plan for a Pick/Insert task

Given these constraints on execution concurrency and a list of programming steps to run, it
is possible to extract steps which may run in parallel, and steps which are Data Dependent
[Hwang and Briggs, 1984]. A line is data dependent on a previous step when one of
Bernstein's conditions is violated by the two lines. In simple terms, data dependent lines both
try to access the same variable. If one line changes the variable before another step can access it,
the earlier step changes the data received by the later step when it does access the variable. This
can cause problems if the old data was required by the second line, since the old data is now
gone. By enumerating all the data dependencies between individual steps, non-dependent steps

119

can be determined and executed concurrently, while dependent steps will execute in the proper

Figure 4. Concurency graph for example task plan.

Bernstein's conditions can be modified to apply to tasks in a robotic workstation by
segmenting tasks into the two types described earlier, Transformations and Observations. These
task types can be mapped onto Bernstein's conditions by associating Object Transformations
with Write and Object Observations with Read. Objects such as parts and tools in the
workspace become the variables of the data dependent enumeration. A concurrency graph is
easily constructed for each Task Plan, where nodes represent tasks, and arcs are placed between
dependent tasks. The graph for the Task Plan of Figure 3 is presented in Figure 4. As tasks
execute in the workspace, other jobs are blocked from executing if they are dependent upon
waiting or running tasks, as shown by the graph. When these dependencies are resolved, the
job can be scheduled for execution.

E. Task Scheduler

It is the responsibility of the Task Scheduler to schedule the steps in the Task Plan for
execution using the information provided by the Resource Manager and Concurrency Detector.
The Scheduler selects a job from a list of waiting tasks, signals the Communication Center to
begin execution of that job and calls the Resource Manager to update the Dynamic Resource
List. Because of the possibility of process starvation, an algorithm was developed which
schedules tasks that have been waiting for resources the longest before scheduling recently
available jobs. This prevents "hogging" of resources by certain sections of the task plan. The

120
algorithm makes use of a Blockledlist which contains tasks whose data dependencies have been
removed, yet whose resources are not yet available. Task number i on the Blockedlist is named

BI[i].

WHILE Not Empty(T) OR Not Empty(Blockedlist) DO

BEGIN
FORi=1ton
BEGIN
IF Data Dependencies for T[i] are removed AND T[i] is not on Blockedlist THEN
Add T[i] to End of Blockedlist.
END;
IF Resources Needed by Head of Blockedlist are Available THEN
BEGIN
Execute Head of Blockedlist;
Remove Task from Blockedlist;
END;
ELSE :
FOR i:= Head + 1 to End of Blockedlist DO
IF Resources Needed by BJi] are Available AND
No Resources Needed by BJi] are Needed by Head of Blockedlist THEN
BEGIN
Execute BJi]; v
Remove Task from Blockedlist;
END;
END;
END;
END;
END;
END;

This algorithm forces tasks waiting for resources to queue on the Blockedlist. The first
element on the Blockedlist, called the Head, is the task that has been waiting the longest for
resources. It is checked first for possibility of execution. If it cannot execute, only tasks which
do not require any of resources needed by the Head can execute. Thus, the Head will only be
blocked from executing while the already scheduled tasks are still running, and will be allowed
to execute as soon as they complete. It is important to note that when a task is scheduled to
execute, its resources are automatically placed on the Dynamic Resource List, and these
resources are deallocated immediately upon completion. Also, a task only moves onto the list of
completed tasks when it successfully terminates. If a task returns with an error, recovery
mechanisms must be invoked before further steps can execute which are data dependent upon
this task.

F. Error Recovery

The design of the Supervisor provides two systematic checks for errors that may occur
during the execution of a Task Plan. First, when a Specialist is unable to complete a-task that it

121

has been issued by the Scheduler, the Specialist returns an error code which specifies the type
of problem that it encountered during execution. Within the Supervisor there exists a set of error
recovery routines for each Specialist which provide experimentally determined mechanisms for
correcting an unexpected event based upon the error code received. The second check for
execution errors occurs when a transformation task completes and an objects state must change
from Unvalidated to either Valid or Invalid. This determination is made by using sensors
available in the workstation to decide if transformed objects are at their desired locations and
possess necessary features.

Depending on the type of error encountered, different types of recoveries are attempted to
correct the situation. One routine simply reexecutes the task in error, to try to aécomplish the
task again. Other routines reexecute the same Specialist, but provide different parameters. A
third set of error recovery routines may need several Specialists to execute. In difficult cases,
the Task Planner is invoked to replan execution. When new tasks are required for error
recovery, they are assigned a very high scheduling priority by being put on the Head of the
Blockedlist. All tasks that were data dependent upon the error causing task are now made data
dependent upon the last step of this error recovery routine.

G. Interprocess Communication

Since the Supervisor and Specialists are running concurrently in an on-line multiprocessing
environment and communication is essential to the functioning of the hierarchy, a protocol was
developed to allow high-speed data flow between the two levels. This protocol and associated
communication mechanisms is housed in a functional block called the Communication Center.

The Communications Center is a separate running process in the multiprocessing system.
Upon startup of the Supervisor, the Communicatons Center is also created and a bidirectional
data path is established between the two. When an instance of a Specialist is created, it receives
a bidirectional data path with the Communications Center as well. Each direction of the
bidirectional path is in fact a queue which allows data to be held on it until it is required by the
receiving process. By using a queue as the data line construction, one does not have to worry
about losing data due to improper handshaking, since the data will remain on the line until read.

To allow for efficient, high-speed communications, the Communicatons Center was
designed to be interrupt-driven. The Communicatons Center can handle interrupts from either
the Supervisor or from any of the Specialists. Supervisor interrupts are required to start the
execution of a Specialist, write to a Specialist, or to close a Specialist upon completion. When
the Communicatons Center receives an interrupt from the Supervisor, it enters a service routine

122

which receives the operation to be performed (open, read, write, or close) and the Specialist
number to perform it on.

When a Specialist has data to transfer to the Supervisor, it issues an interrupt to the
Communications Center. Since the Communicatons Center is constantly I/O-multiplexing the
Specialists for interrupts, it jumps into an interrupt service routine as soon as one is
encountered. The Communicatons Center then receives the data from the interrupting Specialist.
When this data transfer is completed, the Communicatons Center interrupts the Supervisor and
sends the data which is now prefixed with bytes identifying the Specialist that it originally came
from. While this data transfer is taking place, interrupts from other Specialists are placed on a
signal stack to be serviced after completion of this critical section.

V. ONE EXPERIMENTAL IMPLEMENTATION

The Assembly System Supervisor and four Specialists were implemented on a VAX 11/750
with the Unix 4.3bsd operating system under the RAL Hierarchical Control System. At the time
of this implementation, the Task Planner and Assembly Planner were not fully designed, so a
simple task plan was developed as input to the Supervisor. Also, the environment and object
databases had not been created. However, for the assembly task at hand, it was possible to
maintain an environmental model within the Supervisor.

A. Language Choices

Since Unix promotes inter-language communication, the different functions of the
Supervisor were each written in the language best suited for their particular application. The
languages chosen were OPS5, LISP, and C.

OPSS5 is a forward chaining expert system shell [Brownstein et al., 1966; Forgy, 1981]
capable of storing objects and their attributes, a feature which is essential for the current
implementation of the Supervisor. Also, OPS5 under Unix permits event-driven data
modifications, so the attributes of stored object entries can be changed dynamically by other
processes on the system. This aspect fits well into the interrupt driven design that has been
discussed above. Further, OPS5 is rule-driven, and thereby allows the user to encode
experimentally determined results to be used in error recovery situations. Learning simply
requires the addition of new rules to the rule base.

Since OPSS5 is a declarative language, it does not provide the standard algorithmic structure
that is required to easily implement the entire Supervisor structure. LISP [Winston, 1981] was
selected to encode these algorithms for two reasons. First, many of the data structures used are

123

list-based. Second, OPSS easily communicates with LISP under Unix. Therefore, the Resource
Manager, Task Scheduler, and Concurrency Detector were written in this language.

An important feature of the Supervisor design is the ability to execute tasks in parallel in a
multiprocessing environment. The C language [Kernighan and Ritchie, 1978] was selected as
the best language to achieve the high speed message passing necessary for interprocess
communication. Unix 4.3bsd is written in C, and contains a host of routines which promote
interprocess communication through message pipelines. Interrupt structures are also defined
and available between executing processes. Therefore, the Communications Center was written

in C.

B. Workstation Environment and Task Description

The workstation consisted of the following devices:

1.
2.

6.

A PUMA 600 robot under cartesian control.

A pneumatically servoed force sensing gripper. The gripper is equipped with
proximity sensors which reliably report the distance (up to 5 cm) of an object with
known reflectivity. It is also equipped with a cross-fire sensor between the fingers
and an overload sensor in the wrist.

. A large work table supporting the following three pieces.

A large card rack which contained PC cards for picking.

. A small card cage mounted on a 4 degree-of-freedom force detecting platform sensor

in which PC cards were inserted.

A reflective metallic plate for Z calibration of the table plane.

The assembly task consisted of the following steps performed by the arm:

1.
2.

A W A~ W

Calibrate the robot to the Z plane of the table by use of gripper-based proximity sensors.
Locate the large card rack using the proximity sensors.

Note: The location of the card rack could be varied by 30 cm in the X and Y
directions, and the orientation variable by 15 degrees.

Locate the card in the cage and grasp the card with sufficient force for retrieval.
Move Card to small card cage.
Fix the orientation of card cage using proximity sensors.

Insert card into small card cage and release when a given force is detected by the
platform sensor.

124

C. Specialist Descriptions
To accomplish these tasks, a set of on-line Specialists was designed. These Specialists are:

CALZ employs the proximity sensors to determine the table normal vector and
establishes a frame of reference in which the table is the Z boundary plane.

PICK detects the orientation of the card rack and aligns the gripper perpendicular.
It finds the left or right edge of the rack and derives the center point, reaches
into the rack a known distance, descends until the cross fire sensor is

triggered, grasps the card with given force and then ascends to fixed height
above rack.

GMOTION moves the arm along a linear trajectory between two set points.
PLACE employs similar techniques as PICK to determine location of the cage. It

moves the arm to a set position relative to the cage and descends until a
given force is detected by the platform sensor.

Calibration Post

® v
Supply Calibration Target
Cage A Site Cage B
(on 4 DoF Platform
F/T Sensor)

Figure 4. Experimental robotic workstation for Pick/Insert task.

D. Analysis of Experiment

The Supervisor was successfully able to execute the pick/insert assembly task described
above. The Supervisor was able to keep a record of object locations and features in the
workspace, but only minimal verification was available due to the absence of a vision system.
The Resource Manager tracked resources and the Task Scheduler, under the longest-waiting-
time-next algorithm, began Specialist execution in the desired order.

125

Further, a set of error recovery routines were encoded in the Supervisor which allowed the
location of the large card rack and small cage to be varied. If the proximity sensors on the
gripper could not find an object, the task was reattempted with a new gripper orientation,
scanning these sensors along a different trajectory.

Since these was no inherent parallelism in this experiment, the concurrency graph was
linear, and the tasks executed sequentially.

E. Supervisor Transportability: Another Experiment

As part of a cooperative research effort between the Robotics and Automation Laboratories
and the Institut de Cibernética, the Supervisor, Specialists, and some associated hardware were
transported to the Institut de Cibernética for further testing and demonstration [Moed, 1987].
The Supervisor software was modified to function in a VAX/VMS environment. Although
these modifications were quite severe, the theoretical architecture of the Supervisor was not
altered, and still functioned properly.

Equipment available at the Institut de Cibernética allowed the addition of another Specialist
to the Assembly System. This Specialist performed 2D visual object identification from a
camera overlooking the work cell. This Specialist provided the position and orientation of the
large card rack and the small card cage in a similar pick/insert experiment. With this added
information, the location of these objects could vary greatly without affecting task completion.

Experiments performed in the new environment demonstrated that the Supervisor still
managed the execution of Specialists according to design. The Concurrency Detector was
tested, since the VISION and GMOTION Specialists could run simultaneously. Unfortunately,
due to equipment failure, Specialists requiring the Proximity Sensors could not be run.
However, the success of the Supervisor in a new environment is an important indicator of the
robustness of the initial design.

VI. CONCLUSIONS

A robotic assembly system has been presented which allows both the automatic
programming of the robot and the successful execution of the assembly task, despite
uncertainties in the task environment. To achieve this system, the Principle of Least
Commitment is applied so that the successive stages from planning to execution become
progressively more specific. The system is partitioned into off-line and on-line modules. The
off-line modules comprise an automatic programming and planning system. The off-line
modules are the assembly planner, the task planner, and off-line specialists. The assembly

126

planner is responsible for determining what has to be done. The task planner maps the
operations to a robotic environment and describes how the task is to be completed. The off-line
specialists assist in planning the specific tasks.

The on-line modules are the supervisor, on-line specialists, and intelligent device interfaces.
The supervisor manages the execution of the tasks in the workstation, and decides when the
operations will execute. The on-line specialists control the physical manipulators, sensors and
peripherals and execute the desired task. Since there can be a variety of unique devices in an
workstation which can perform the same functions but require different programming
languages, the intelligent device interfaces translate generic specialist commands into device-
specific instructions.

The design, implementation, and testing of the Supervisor as part of an integrated
hierarchical planning and execution knowledge-based robot workstation is presented in some
detail. The Supervisor is responsible for on-line management of an assembly process. Using
constructs developed in Operating Systems, the functionality of the Supervisor is separated into
five main sections: Resource management; Concurrency Detection; Task Scheduling; Error
recovery; and Interprocess Communication. The design presented here contains the necessary
intelligence to recover from unexpected deviations in the workstation environment and provides
one look into on-line robot task management. An experiment performed under Supervisor
control demonstrates that the design provides a structural base for a robust on-line robotic
workstation execution.

ACKNOWLEGMENT

The work reported here was performed by many researchers at the Institut de Cibernética of
the Universitat Politécnica de Catalunya and the Robotics and Automation Laboratories of the
Rensselaer Polytechnic Institute. The contributions of Luis Basafiez (IC), Carme Torras (IC),
Alberto Sanfeliu (IC), Michael Moed (RAL), and Susan Bonner (RAL) are especially
acknowledged. This research was supported in part by the U.S.—Spain Joint Committee for
Scientific and Technological Cooperation through grant CA8309-188.

REFERENCES

Ambler, A. P. and Popplestone, R. J.: "Inferring the Position of Bodies from Specified Spatial
Relationships," Artificial Intelligence, vol. 6, 157-174 (1975)

Angermuller, G. and Hardeck, W.: "CAD-Integrated Planning for Flexible Manufacturing
Systems with Assembly Tasks," IEEE Intl. Conf. on Robotics and Automation, Raleigh,
NC, 1822-1826, 1987

127

Basafiez, L., Kelley, R.B., Moed, M.C. and Torras, C.: "A Least-Commitment Approach to
Intelligent Robotic Assembly,” IEEE Intl. Conf. on Robotics and Automation, Philadelphia, -
PA, 1318-1319, 1988

Bernstein, A. J.: "Program Analysis for Parallel Processing," IEEE Trans. on Electronic
Computers, vol. EC-15, no. 5, 757-762, 1966

Brownstein, L. et al.: Programming Expert Systems in OPS5, Addison-Wesley (1986)

Canny, J.: "Collision Detection for Moving Polyhedra," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMI-§, no. 2, 200-209, 1986

Chochon, H. and Alami, R: "NNS, A Knowledge-Based On-Line System for an Assembly
Workcell," IEEE Intl. Conf. on Robotics and Automation, San Francisco, CA, 603-609,
.1986

Clermont, G., Hermant, M. and Gaspart, P.: "FIACRE: A Flexible and Integrated Assembly
Cell for Research and Evaluation," 16th Intl.Symp. on Ind.Robots, Brussels, 1986

Donald, B.R.: "Global and Local Techniques for Motion Planning," M.Sc. Thesis,
Massachusetts Institute of Technology, 1984

Forgy, C.L.: "OPS5 User's Manual," Department of Computer Science, Carnegie-Mellon
Univ, 1981

Herve, J.M.: "Analyse Structurelle des Mecanismes par Groupe des Deplacements,"
Mechanism and Machine Theory, vol. 13, 437-450, 1978

Hwang, K. and Briggs, F.A.: Computer Architecture and Parallel Processing, McGraw-Hill
(1984)

Ilari, J.: "Study of New Heuristics to Compute Collision-Free Paths of Rigid Bodies in a 2D
Universe," Ph.D. Thesis, Universitat Politécnica de Catalunya, 1987

Ilari, J. and Reyna, J. LL.: "Some Experimental Result Using Heuristics for Solving the Find-
Path Problem in C-space," IFAC Symposium on the Theory of Robots, Vienna, 1986

Juan, J. and Paul, R.: "Programming Automatic Assembly for Robots," 1st IFAC Symposium
on Robot Control (SYROCO '85), Barcelona, 407-410, 1985 .

Juan, J. and Paul, R.: "Model for Automatic Programming of Fine-Motion in Assembly," IEEE
Conf. on Robotics and Automation, San Francisco, CA, 1582-1587, 1986

Kelley, R.B.: "Vertical Integration for Robot Assembly Cells," IEEE Intl. Conf. on Robotics
and Automation, San Francisco, CA, 585-590, 1986

Kelley, R.B. and Bonner, S.: "Understanding, Uncertainty, and Robot Task Execution," 1st
IFAC Symposium on Robot Control (SYROCO '85), Barcelona, 331-335, 1985

Kernighan, B.W. and Ritchie, D.M.: The C Programming Language, Prentice-Hall (1978)
Lieberman, L.I. and Wesley, M.A.: "AUTOPASS: An Automatic Programming System for

Computer Controlled Mechanical Assembly," IBM J.of Res. and Devel., vol. 21, no. 4,
321-333, 1977

128

Lozano-Perez, T. and Winston, P.H.: "LAMA: A Language for Automatic Mechanical
Assembly," Fifth Intl. Joint Conf. on Artifical Intelligence, Cambridge, MA, 710-716,
1977

Moed, M.C.: "An Intelligent Supervisor for a Robotic Assembly System," Master's Thesis,
Rensselaer Polytechnic Institute, 1987

Moed, M. C. and Kelley, R. B.: "The Design of an Assembly Cell Task Supervisor." IEEE
Intl. Conf. on Robotics and Automation, Philadelphia, PA, 652-653, 1988

Moed, M.C. and Kelley, R.B.: "An Expert Supervisor for a Robotic Work Cell," SPIE Conf.
on Intelligent Robots and Computer Vision, Cambridge, MA, 496-501, 1987

Thomas, F. and Torras, C: "Constraint-Based Inference of Assembly Configurations," IEEE
Intl. Conf. on Robotics and Automation, Philadelphia, PA, 1304-1305, 1988

Vijaykumar, R. and Arbib, M.A.: "Problem Decomposition for Assembly Planning," IEEE
Intl. Conf. on Robotics and Automation, Raleigh, NC, 1361-1366, 1987

Winston, P.H. and Horn; B.P.: LISP, Addison-Wesley (1981)

Robot/Vision System Calibrations in Automated Assembly

F. G. King
Body & Assembly Operations

G. V. Puskorius, F. Yuan
R. C. Meier, V. Jeyabalan and L. A. Feldkamp
Research Staff

Ford Motor Company, Dearborn, Michigan

ABSTRACT

A vision guided robot for assembly is defined to be a robot/vision
system that acquires robotic destination poses (location and orientation)
by visual means so that the robot's end-effector can be positioned at the
desired poses. In this paper, the robot/vision system consists of a
stereo-pair of CCD array cameras mounted to the end-effector of a six-axis
revolute robot arm. Automated calibration methodologies for local and
global work volumes of the robot/vision system are described, including a
perspective error transform calibration method for cameras. Multiple
component assembly and robotic fastening has been demonstrated with the
developed vision guided robot.

1. Introduction

For most vision guided robots, the vision modules are mounted remotely
away from the robot, either on the ceiling or the floor, with the robot's
work envelope within the field of view of the vision modules (see Figure
1). Recent advances in the miniaturization of cameras [16] and other
optical systems has made the mounting of vision modules to the robot arm a
practical strategy for robot guidance. This paper addresses calibration
issues associated with mounting a stereo pair of CCD array cameras onto
the end-effector of a six-axis revolute robot arm [8] as shown in Figure
2. The advantages and disadvantages of a robot-mounted vision system are
discussed in the next section. Since a key to a useful robot/vision
system lies in its accuracy, calibration of the robot/vision system is
presented in detail in section 3. In section 4, an assembly strategy
based upon the geometric relationships between various elements of the
robot/vision system and its environment is outlined. A description of an
assembly application using the robot/vision system is presented in section
5. Section 6 describes the use of the robot/vision system to infer global
errors of the robot and the cameras. Section 7 discusses another method of
calibrating the cameras.

2. Robot-Mounted Vision System

Robots guided by remotely mounted stereo cameras have been previously

demonstrated [9]. This method of robotic guidance relies on having the
robot's work envelope lie within the field of view of the stereo vision
system. Most industrial robot arms have rather large work envelopes,

consisting roughly of a hemisphere of 1.5 m radius. The planar resolution
of a typical CCD array camera, even with sub-pixel calculations, is only
on_the order of one part in a thousand. Hence, for a robot arm of one and

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Springer-Verlag Berlin Heidelberg 1991

130

a half meter radius, the planar resolution of a remotely mounted camera
that views the entire work envelope is only about 3 mm, whereas the
accuracy requirement for many assembly tasks in the automotive industry is
on the order of 1.5 mm. This planar resolution limits the depth resolution
of a pair of stereo cameras, the accuracy of which is a function of the
separation of the stereo baseline and of the angle of convergence of the
cameras. A common approach for increasing the resolution of such vision
systems is to use multiple stereo camera pairs with overlapping fields of
view.

An alternative approach for vision guided robots is to mount one or
more cameras to the end-effector of the robot arm, thereby allowing the
vision system to be used throughout the working envelope of the robot arm.
Hence, the complexity of the system is reduced by having fewer cameras.
Moreover, since this strategy allows for image acquisition throughout the
work envelope of the robot arm, the field of view of the stereo camera
system can be restricted, thereby increasing the resolution of the vision
system. Another advantage of a robot mounted vision system is that, due
to the mobility of the robot arm, the vision system can be moved to view
around obstructions.

3. Robot/Vision System Calibration

With the cameras mounted to the end-effector of the robot arm, a
general calibration of the robot/vision system consists of two steps: (1)
determining camera model parameters with respect to a reference coordinate
frame, and (2) determining a geometric relationship between the reference
and robot end-effector coordinate frames. The result of the calibration
procedure is a pair of camera calibration matrices and associated distortion
correction terms, calculated relative to the end-effector coordinate
frame. By using the camera calibration matrices in conjunction with the
kinematic model of the robot arm, three dimensional coordinates with
respect to the robot's base frame can be determined by the stereo vision
system.

3.1 Camera Calibration Relative to Reference Frame

The calibration of a single camera is the estimation of camera model
parameters that are used for the mapping of points expressed relative to a
world coordinate frame to the vision system's pixel coordinates. Assuming
a pin-hole model and the laws of Gaussian optics for the camera, the
mapping can be shown to be a linear function of the world frame coordinates
and is represented by a 3x4 calibration matrix in homogeneous coordinates
[1,3,6]. This calibration matrix can be decomposed into the product of an
internal and an external transformation matrix [5]. The external matrix
is a 4x4 homogeneous transformation matrix relating the coordinate frame
of the camera's center to an external reference coordinate frame. The
internal matrix, which is also expressed in homogeneous coordinates as a
34 matrix, is a function of the camera's focal length, scaling parameters
and coordinates of the image element's origin. Due to the homogeneous
formulation, there are eleven unique elements in the calibration matrix.
Thus, to determine the elements of the calibration matrix, it is necessary
to measure the pixel coordinates of a minimum of 6 non-coplanar points
whose coordinates are known with respect to the reference coordinate frame
[1,14,15]. A linear least-squares procedure can be formulated to calculate

131

the elements of the calibration matrix. In practice, a precisely machined
calibration plate mounted orthogonally to a translation stage is used to
establish the reference frame and the coordinates of known points.

The accuracy of the pin-hole camera model can be improved by accounting
for geometric aberrations that are due to departures from the ideal
conditions of Gaussian optics. The major geometric aberration that can
affect the position of an image is radial distortion. The lowest order
radial distortion component is a cubic function of the radial distance of
the image from the optical axis [2]. For the CCD array cameras used in
this study, the distortion correction to the camera model results in
increasing the accuracy of calibration by approximately 50 percent over
the nominal pin-hole camera model. Higher order polynomial corrections to
radial distortion and polynomial corrections for tangential distortion
were found to have a negligible effect on the accuracy of calibration.
Similarly, the effects of image plane tilt with respect to the optical
axis were also found to be negligible for small angles. With this
calibration, an accuracy of better than 0.1 mm is achieved for the stereo
vision system in a field of view of approximately a 125 mm cube.

3.2 Camera Calibration Relative to End-Effector Frame

In order to express the coordinates of imaged points relative to the
robot's base frame, the camera calibration matrices are transformed to
relate the camera-centered coordinate frames to the robot's end-effector
frame. This transformation is expressed as a 4x4 homogeneous transformation
matrix and 1is denoted by T?. The relationship can be established by
relating the coordinates of a minimum of four non-coplanar known points
measured relative to these two coordinate frames. These data points can be
obtained by manually translating the robot arm to touch a set of known
points on the calibration block with a probe attached to the end-effector.
The coordinates of the points relative to the end-effector frame are
determined by the robot controller, and the coordinates relative to the
reference frame are known a priori from the construction of the calibration
block. This method is straightforward, but time consuming and may yield
inconsistent results.

To determine this relationship between the end-effector and external
reference frames automatically, a procedure using rotational and transla-
tional motion of the robot has been proposed [13]. The methodology to be
described is based only on translational motions and uses a machined
probe attached to the robot end-effector in the field of view of the
vision system.

Let E denote the end-effector frame and r be the external reference
frame to which the cameras are calibrated. Then the relation between E
and r is expressed as TE. Let

R D R°T -rR'TD
TE = and TE
0 1 0 1

By determining R and D, one can solve for T$. .

132

Note that when the robot arm is moved from E0 to El, there is a
corresponding motion of r0 to rl because the vision system is mounted on
the robot arm (see Figure 3). The relations between all these reference
frames are given as

0 _ E E 1
Ty = TF TE} TF and TEQ - T - TE]

If P is a point known with respect to r0 and P., is obtained from vision
cameras, then

Poo = TE TE?) TEPM (1
R} D}
Let TE] = ° °
EO
0 1
1 — I and D! is known if the robot is moved by pure translations. So
0 y

equation (1) becomes
R*Dj = Py - Pry (2)

R can then be solved by using the least squares method with at least 3
translational moves.

To solve for D in TE, use a machined probe with tip P so that Pg, is
known. Determine P.y with vision cameras. Then Pg; = TES P.p, would
give

D = P.g - R* Py (3)
To summarize, the computation steps for Tﬁ are

1) Determine stereo vision calibration matrices relative to base
reference frame r.

2) Make n (> 3) programmed translational moves and measure P.;, i =
1,...,n.

3) Determine rotational part R by equation (2).

4) Pick up probe and determine probe tip by stereo vision cameras.

5) Determine translational part D by equation (3).

R D

6) Form TE =
0 1

3.3 Calibration Errors and Compensation

Numerous factors, e.g. incomplete camera model, noisy data, and other
random or systematic errors, limit the overall applicability of the
robot/vision system calibration as described above. 1In the inference of
the transformation matrix T?, a variety of measures are taken to minimize
the effects of these errors. First, the motion of the robot arm is
programmed so that the effects of gear backlash are eliminated. This is

133

accomplished by actuating each joint of the robot in a fixed direction
when approaching the desired pose. Another possible source of error is
the relation of the probe center with respect to the end-effector frame.
In fact, the components of the probe's location that are orthogonal to the
sixth rotational axis of the robot arm are difficult to measure accurately.
These components can be determined by viewing a point fixed in space while
rotating the robot's sixth axis. This has the effect of calculating a
correction to the matrix Tg. However, the resulting camera calibration
matrices may still be related to a reference coordinate frame that is not
precisely aligned with the end-effector coordinate frame.

Of even greater significance are the geometric and non-geometric robot
errors which result in inaccurate estimates of robot end-effector poses.
If real-time visual feedback control is not a feasible means of robot
guidance, then some corrective strategy must be applied to use the vision
system for robot guidance in an open loop mode. Local and global
approaches for correcting these errors will be briefly discussed in the
following sections.

Others [4] have used a remotely mounted vision system to increase the
precision of a robot arm in a local volume defined by the field of view of
the vision system. Correction parameters based on 6 dimensional cartesian
coordinates are inferred from wvisual data and robot poses. This
methodology should be directly applicable to a robot mounted wvision
system and can be extended to a larger work envelope by using numerous
viewing points with associated local calibration volumes.

4. Assembly Strategy with Vision Guided Robot

There are five essential elements in vision guided robots for automated
assembly. They are the workpiece, the parts or components to be assembled
into the workpiece, the robot and its controller, the calibrated vision
system and the gripper. Assume that the workpiece contains holes into
which components are assembled. The fundamental goals of the robot/vision
system are to determine the robot poses for the assembly operations of
picking, inserting and fastening of the components into the workpiece, to
execute the appropriate motion between the poses, and to perform the
assembly operations. Geometric relationships and constraints associated
with these five elements are discussed leading to a strategy for using
vision guided robots in automated assembly. The discussion is restricted
to a robot/vision system which performs the insertion of a part P into a
hole H on the workpiece based on 3D visual data. The workpiece contains a
pre-selected feature F which the vision system images so that the pose of
the hole can be determined.

4.1 Use of Robot/Vision System

The first geometric relationship is that of the vision system and the
robot. As described in the previous section, let C] and Cj be the camera
calibration matrices and T? be the transformation between the robot end-
effector and the reference frame to which the vision system is calibrated.
Then as depicted in Figure 4, postmultiplying the camera calibration
matrices by the transformation matrix T? expresses the camera calibration
matrices with respect to the end-effector coordinate frame. -~ This
relationship allows the vision system to be used for 3D vision guidance.

134

In a typical application, these 3D coordinates are transformed to the
robot base frame through the kinematic model.

4.2 Fixed Viewing Application

Express the viewing pose and the target pose of the robot arm as
transformation matrices VTS and tTg, respectively. Let the geometric
relationships between the imaging feature F with respect to the end-
effector frame be denoted by T6, between the hole H with respect to the
feature F by TF, and between the part P with respect to the end-effector
coordinate frame by TP Both T and T6 may be derived from CAD data bases
for the workpiece, part and the gripper. T is obtained from visual data
while ng, from the robot kinematic model. Combining these
transformations, the target robot pose is given by

6 _ b o mE o mH . (Py-1
tlo = Tg * Tg * T * (Tg)

This formulation assumes ideal conditions which, in practice, are
usually violated. First, the poses described by the kinematic models of
the robot arm may not accurately reflect the true robot poses. Second,
the vision system may be calibrated relative to a reference coordinate
frame that is slightly offset in location and orientation from the end-
effector frame. Third, the geometric relationship of the gripper with
respect to the end-effector frame may not be precisely known since the
physical location of the end-effector frame is not measurable. Note that
the various geometric errors are constant with the exception of those of
the robot arm, which are functions of the joint variables. However, if
the viewing position is fixed for a particular assembly task, then the
error in the robot pose becomes a constant for that viewing pose. Thus,
under this constraint, all the errors on the RHS of the above equation are
constant. The error in the target robot pose, on the other hand, is not
constant, since the target pose is a function of the 1location and
orientation of the workpiece. However, it is nevertheless reasonable to
approximate this error as a constant since the angular ranges of the six
joint axes do not vary considerably under the local volume constraint
imposed by fixing the imaging point. For small errors, the correct target
robot pose can be approximated as the product of the nominal target robot
pose with an error transformation:

eT8 = (T8 oL o TH o (TE) T o (I + 6T,

where I is a 4x4 identity matrix and 8T is an error transformation matrix
[9], the elements of which are linear functions of all the above errors.
The local calibration problem is then to determine the six components of
¢8T. The methodology for increasing robot precision in a local volume [4]
is easily revised for determining these error terms.

If, in the above equation, TF and (T)"' are not known a priori, then
the local calibration problem reduces to determining the 12 components of
t(TF) given by:

f(T8) = T8 o (TB)T o (I + ,5T)
For either case, the unknown correction parameters can be inferred by

iteratively relating taught robot poses to the viewing pose and -to ‘the
pose of the imaging feature as determined.by the vision system.

135

5. Concept Demonstration of Instrument Panel Assembly

An accuracy of 1.5 mm is achieved with the above local calibration
methodology, i.e. by fixing the imaging point of the robot/vision system.
With such an accuracy and a local volume constraint of a 125 mm cube,
vision guided robotic assembly of components into an automotive instrument
panel (IP) is demonstrated. The robot-mounted stereo camera system is
used in the open loop feedback scheme in which the pose of a randomly
positioned IP is visually determined and communicated to the robot only
once. The IP can be tilted or rotated by +15° and can be positioned so
that the imaging features are contained in the local volume. After
receiving the pose information, the robot moves to pre-taught positions to
pick up end-effectors and components and performs the assembly tasks.
There are four components, clock, heater control wunit, radio and
speedometer cluster. Because of the variation in size and weight of the
four components, a parallel jaw gripper and a suction cup end-effector are
used. Each end-effector is capable of picking up two components, thus
demonstrating the concept of multi-purpose grippers. For a laboratory
environment, the wuse of a finger exchange wunit, rather than a tool
exchanger for the robot, is more adaptive and flexible. Since one of the
end-effectors requires suction, the concept of vacuum exchange has also
been shown. The components are presented in such a way that the concepts
of just-in-time delivery and part kitting are assumed.

With two changes of fingers, the picking and insertion of the four
components are accomplished in 65 seconds. To achieve such a cycle time,
image processing has to performed while the robot is moving to pick up the
first set of fingers and component. This is accomplished by storing the
images of both cameras in buffers. By using three pre-painted dots or
pre-punched holes as the imaging feature, the image processing and stereo
correspondence time is less than 5 seconds. The pose information is
transmitted to the robot before it has even picked up the first set of
fingers. 1In comparison, a natural feature, such as the boundary of an air
vent grill, requires a processing time that is 5 times longer due to the
fact that the air vent can be in different configurations.

After inserting the components into the IP, the robot switches fingers
to pick up a fastening tool. The above open loop feedback approach is not
sufficient since (1) the tolerance between the screw and the fastening
hole is less than 1.5 mm, (2) the screw in the fastening tool is not held
rigidly and wiggles while the robot moves the fastening tool into position,
and (3) the fastening tool may not be held rigidly with respect to the
robot wrist since the force of the weight of the fastening tool is
greater than the capability of the finger exchange unit.

To perform robotic fastening, an error correction to the open loop
control is needed. After the robot moves to a position above the screw
hole, the vision system is used again to determine the relative position
between the screw and hole. This use of the vision system is feasible
since both the screw and the hole are within the field of view of both
cameras. A priori information about the location and orientation of the
fastening tool tip is also required.

136

6. Global Calibration of Robot/Vision System

As indicated in section 4, one of dominant errors of the robot/vision
system are the geometric and non-geometric errors of the robot. A global
calibration procedure for the robot/vision system has been developed by
using the vision system on the robot end-effector [11]. The calibration
produces a single set of parameters which can be used throughout the
entire work envelope of the robot arm. The methodology determines the
geometric errors of the robot/vision system and the effects of joint
compliance and gear backlash. The primary constraint employed by the
methodology is that the coordinates of a single point in space, as
measured by the stereo vision system, must not change with different robot
joint angle configurations. A threefold improvement in the positioning
accuracy of a robot arm can be obtained with this methodology.

6.1 Geometric Errors of the Robot

Let Aif1 be the 4X4 homogeneous transformation matrix representing the
pose of the robot's ith 1link coordinate frame relative to (i-l)th link.
The differential errors of the link and joint parameters give rise to a
corrected relationship

caly = Al (T saly)

For N-axis robot, the corrected representation of the end-effector frame
to the robot base fram is given by

N
cTd - H Cajly w8810) = T (T +6T8) (4)

i=1
by ignoring high order terms.

6.2 Non-geometric Robot Errors

In the robot that is being used, the most significant non-geometric
errors are gear backlash and compliance. Backlash is modeled as

A8} = By; sign (8; - (8;)previous)

For backlash, induced by the third motor, of joint 2, which is coupled to
joint 3 with a rubberized timing belt, the model is

885 = Bp3 sign (83 - (83)previous)

The balanced design of the links eliminated the need to compensate for
joint compliance due to the weight of the links. For compliance due to
the weight of the end-effector, it is modeled as a linear function of the
cross-product of a vector parallel to the joint axis with a vector
relating the mass position to the joint axis.

6.3 Alpgebriac Formulation of Geometric Relationships

From section 4, we have for camera J, Cg = Cj T? where r is the

137
reference frame to which the vision system is calibrated. Because of the
errors in the robot, the corrected camera calibration matrix should be
cpb _ r 6 6
6 = Cf *ATé = C) * (I + 6T%)

Let 8P denote the homogeneous coordinates of a target relative to the end-
effector frame and YU, the homogeneous pixel coordinates of camera J. Then

Ju = c§ * aTé * bp
Let 8P = ATf * 6p (5)
Then gP is the target coordinates determined from the uncorrected camera
calibration matrices, i.e. the measured target coordinates. The target
point relative to the robot base is given by Op = ch %* 6P where ch is

defined by equation (4).

Combining equations (4) and (5), one obtains

Op = T§ % (I + 8T§) * (ATS)™ ! * 6P (6)
Since (ATy 1 = (1 - §Tg), equation (6) becomes
Op = T§ % (I + §T§ - 6TF) * 8P (7

if high order terms are ignored.

The 43 unknowns in equation (7) include 24 kinematic parameters, 10
non-geometric parameters, 6 camera origin errors and 3 parameters for
target location relative to the base frame. Some of these parameters are
redundant and can be combined, resulting in a vector equation of only 35
unknowns.

6.4 Data Acquisition and Results

A series of views of the same target from many joint angle
configurations is used to solve for the 35 unknowns. The choice of
target, its position, and the widely varying joint angle robot poses are
primary considerations in the data collection process. The target is a
small nylon ball bearing illuminated by a laser. It is located above the
robot where it can be viewed from different joint angle poses. These
poses are automatically generated based on concentrated spheres centered
at the target point and which radii are within the vision system
calibration range. The poses are chosen to provide a uniform distribution
of joint angles for the first five axes. Data collected consists of
recorded joint angles from the robot and centroid calculation of the
target from the vision system. Mathematical morphology [7] is used for
image processing. From this data the 35 parameter corrections are inferred.

7. Linear Perspective Camera Error Model

It was clear from the above work that a good camera calibration is
essential to an accurate robot/vision system. Based on the differential
error ' model technique, a linear perspective error model for camera
calibration is formulated [12]. Recall that

138

R T
[INT] = 0 k, Vo 0 and [EXT] =
0 1
0 0 1 0
where R = f(rx,ry,rz) and T = (tx,ty,tz)t. Express the difference
between measured pixel and distored pixel coordinates as
Auy = up - uy and hvyg = vy - vy,
where uy and v4 are cubic functions of (G, (up - Yk, (vy - v)/kp)

with (up,vp) being the ideal pixel coordinates. The above differences can
be approximated by first order corrections as

duy duy duy duy
Muy = — Aky + *es + — At, + — Ar, + — AG
ok, Jat, or, aG
where
duy
- = Qo * (up - uo)/k]_
ok,

with Q=1+ (G * ((uy-ug)/ky)2 + ((vy-vg)/kp)?)

duy duy duy
— = — = 0 , and — = 1
dk, dvy dy,

Similar equations can be obtained for Avy.

To obtain partials with respect to [EXT], one should consider

d[EXT] = [EXT] §[EXT]

where

§[EXT] =

with (R, ,Ry Ry, Ty ,Ty ,T,) = £(x, 1Ty, T, Lty ity ,t,). Since initial estimates
of all camera parameters are known, one can treat (R,T) as the unknown
corrections to [EXT]. This change of coordinates from (r,t) to (R,T)
provide an easy representationmof d[EXT]. Then

duy 3 u -ug u -uy 9 v, -vg OV
— - q it v 20T e P
3s; as ky k, ds

i i

where S; € (Rx,Ry,Rz,Tx,Ty,Tz),

aup dv
—— and — are functions of (cij, u,, Vg, w),
3s; 3s;

1 1

with c;; being elements of the camera calibration matrix.

An error model of 11 unknowns (Ak,,Ak,,Auy,Avq), AG, (ARX,ARy,ARz), and
(ATX,ATy,ATz), in two equations with the partial derivatives as
coefficients has been formulated. These 11 unknowns can be solved by a
least squares method using n/2 imaged points to form n equations.

To summarize, the steps to obtain a corrected camera model are

1) compute camera calibration matrices without distortion,

2) form matrices [INT] and [EXT],

3) solve for the 11 unknowns,

4) update [INT] and G by addtion,

5 update [EXT] by using [EXT] = [EXT] (I + §[EXT]) and
orthonormalize,

6) recompute C = [INT] [EXT], and

7) iterate.

The benefits of the perspective error transform method are that

- a single camera accuracy of 1 part in 6750 is achived,

- least squares is the sole optimization technique,

- all parameters are estimated at the same time which allows easy
inclusion of abberations due to departure from the ideal pin hole
model, and

- no prior camera knowledge is required where other methods required
knowledge about vy, vy, k,, or spacings between vertical image
elements of the CCD array.

8. Summary

A robot-mounted stereo camera system has been developed for 3D visual
guidance of the robot arm. Camera and robot calibration methods have been
developed. Local calibration and local volume constraints have been used
in the demonstration of vision guided robotic assembly of components into
an instrument panel. Local calibration accuracy is about 1.5 mm in a 125
mm cube while the vision system accuracy is about 0.1 mm. Also
demonstrated are the two open loop visual control schemes for robotic
guidance. To further increase the accuracy of the system, a global
robot/vision calibration method has been developed using the stereo
cameras mounted on the end-effector. Realizing the importance of the
accuracy of the vision system, a linear perspective camera error model has
also been developed.

140

9. References

1. D. H. Ballard and Brown, C. M., Computer Vision, Prentice-Hall,
Englewood Cliffs, NJ, 1982.

2. M. Brown and E. Wolf, Principles of Optics, 4th ed., Pergamon
Press, Oxford, 1970
3. Duda, R. O. and Hart, P. E., Pattern Recognition and Scene

Analysis, Wiley, New York, NY, 1973.
4. L. P. Foulloy and R. B. Kelley, "Improving the Precision of a

Robot", Proceedings IEEE International Conference on Robotics and
Automation, 1984,

5. S. Ganapathy, "Decomposition of Transformation Matrices for Robot
Vision", Proceedings IEEE International Conference on Robotics and
Automation, 1984,

6. R. M. Haralick, "Using Perspective Transformations in Scene
Analysis", Computer Graphics and Image Processing, 13 (1980).

7. R. M. Haralick, et. al., "Image Analysis Using Mathematical

Morphology", Pattern Analysis and Machine Intelligence, Pami-9, No. 4,
July 1987.
8. F. G. King, et. al., "Vision Guided Robots for Automated Assembly",
Proceedings IEEE International Conference on Robotics and Automation, 1988.
9. D. E. B. Lee, P. Trepagnier, "Guiding Robots with Stereo Vision",
Robotics Today, April 1984.

10. Paul, R. P., Robot Manipulators: Mathematics, Programming and
Control, MIT Press, Cambridge, Ma, 1981.

11. G. V. Puskorius and L. A. Feldkamp, "Global Calibration of a
Robot/Vision System", Proceedings IEEE International Conference on
Robotics and Automation, 1987.

12. G. V. Puskorius amd L. A. Feldkamp, "Camera Calibration Methodology
Based on a Linear Perspective Transformation Error Model", Proceedings
IEEE International Conference on Robotics and Automation, 1988.

13. Y. C. Shiu and S. Ahmad, "Finding the Mounting Position of a
Sensor by Solving a Homogeneous Transform Equation of the Form AX = XB",
Proceedings IEEE International Conference on Robotics and Automation,
1987.

14. I. E. Sutherland, "Three-Dimensional Data Input by Tablet",
Proceedings IEEE 62 (4), April 1974.

15. C. K. Wu, et. al., "Acquiring 3-D Spatial Data of a Real Object",
Computer Vision, Graphics and Image Processing, 28 (1984).

16. F. Yamagata, et. al., "Miniature CCD Cameras: A New Technology
for Machine Vision", Robotics Age, March 1985.

VISION

ROSOT
CONTROLLER

Figure 1.

MOoDULE

COMPUTER
VISION
MODULE

141

STEREO IMAGES

INSTRUMENT
PANEL

P
COMPONENTS

ROBOT
CONTROLLER
Vision System for Figure 2. Vision-Guided Robots for
Robotic Guidance

Automated Assembly

Ca' CALIBRATION MATRICES Cg'
L |POST - MULTIPLY BY |
T8
| '
. PIXELS 6
A Ya Ug Ce
SOLVE FOR
S Xg ——
APPLY T8

X

Figure 3. Use of Robot/Vision System

142

‘[E0
\
\
\ & k
\

\7;
\ . \ 7;‘
\ P \
\ \
\ \
\
ro =~ ~ < \
r

Figure 4. Geometric Relationship between
frames EO, E1l, rO and rl

LU EJI—EL'

Part III

Neural Networks, Parallel Algorithms
and Control Architectures

ol Lel EJI—EL'

A Unified Modeling of Neural Networks Architectures*

S. Y. Kung J. N. Hwang
Princeton University University of Washington
Department of Electrical Eng. Department of Electrical Eng., FT-10
Princeton, NJ 08540 Seattle, WA 98195
Abstract

Although neural networks can ultimately be used for many applications, their suitability for a
specific application depends on the acquisition/representation, performance vs. training data, response
time, classification accuracy, fault tolerance, generality, adaptability, computational efficiency, size and
power requirement. In order to deal with such a multiple-spectrum consideration, there is a need of
unified examination of the theoretical foundations of neural network modeling. This can lead to more
effective simulation and implementation tools. For this purpose, the paper proposes a unified modeling
formulation for a wide variety of artificial neural networks (ANNs): single layer feedback networks,
competitive learning networks, multilayer feed-forward networks, as well as some probabilistic models.
The existing connectionist neural networks are parameterized by nonlinear activation function, weight
measure function, weight updating formula, back-propagation, and iteration index (for retrieving phase)
and recursion index (for learning phase). Based on the formulation, new models may be derived and one
such example is discussed in the paper. The formulation also leads to a basic structure for a universal
simulation tool and neurocomputer architecture.

*This research was supported in part by the National Science Foundation under Grant MIP-87-14689, and
by the Innovative Science and Technology Office of the Strategic Defense Initiative Organization, administered
through the Office of Naval Research under Contract No. N00014-85-K-0469 and N00014-85-K-0599.

146

1 Characterizations of the Generic Iterative ANN Model

A basic ANN model consists of a large number of neurons, linked to each other with connection
weights. Each, say i-th, neural processing unit (PU) has an activation value a;. This value
(either discrete or continuous) is propagated through a network of unidirectional connections
to other PUs in the network. Associated with each connection, there is a synaptic weight
denoted as w;; which indicates the effect the j-th PU has on the i-th PU (see Figure 1(a)). In
order to provide some biological fidelity, all of the existing artificial neural networks (ANNs)
adopt an information storage/retrieval process which involves altering the connectivity pattern
of synapses, and/or by modifying synaptic weights associated with the connections [3]. From
algorithmic point of view, there are two separate phases of ANN processing: retrieving phase
and learning phase.

1.1 Retrieving Phase of the Generic Model

Suppose that the connectivity pattern and synaptic weights of a neural network are known
and fixed. In the retrieving phase, responding to the inputs (test patterns), the activation
values of all neurons are iteratively updated based on the system dynamics until they reach
the L-iterations and produce the responding outputs. The system dynamics in the retrieving
phase of a generic iterative model for ANNs can be written as:

Ny
ui(l + 1) = Z:’w,‘j(l + l)aj(l) (1)
a,-(l + 1) = fi(’u,'(l + 1), 0:(1 + 1), a,—(l)) (2)

where 1 <7 < Nyyy and 0 <1 < L — 1. The initialization activation values are often denoted
by «;, i.e., {a;(0) = a;}. The termination activation values are often denoted by g, i.e.,
{ai(L) = Bi}.

There are two types of inputs are observed: the stimulus inputs {e;(0)} and the external
inputs {#;(1)}. If the stimulus inputs are used to represent the test/training patterns, then
the external inputs are often used as non-modifiable thresholding elements (e.g., [13, 1]), or
as modifiable parameters to control the bias (e.g., [33, 32, 29]). It is also possible that the
external inputs are used to represent the test/training patterns [24, 28], then the stimulus
inputs will be purely used as initialization purpose. The system dynamics in Eqs. 1 and 2 may
be graphically represented by an L-level feed-forward neural network (with N; neural units
at [-th level) shown in Figure 1(b), where one mathematical iteration is corresponding to one
level of the network.

Equation (1) defines the propagation rule. Each PU, say i-th neuron at (I + 1)-th level,
receives the weighted inputs from other PUs at I-th level to yield the net input w;(I + 1).
Equation (2) defines the nonlinear activation function’ f;(! + 1) which determines the new
activation value a;(! + 1) as a function of the net input value u;(! + 1), the external input
8:(1+ 1), and in some models, the previous activation value a;({).

Iteration Index ! in the Retrieving Phase The iteration index ! used in the generic
iterative ANN model (see Eqs. 1 and 2) can be used to represent one of the three possible
iterations: time, layer, or pattern.

1. If [represents the time iteration, then the network is a single layer feedback network
with'eachneiron beingupdatedisynchronously (in parallel) at each level. The resulting

147

b (a)

aw) aw) a) A

a (2) g (2) a (2_‘; 3,42)

a(o a(o af(o)

A 1 v (b)
Figure 1: (a) A basic ANN model with two operations: propagation rule, and nonlinear
activation, where iteration index is not considered. (b) A generic iterative model (L-iterations)
for ANNs, where w;;(!) and N; may be homogeneous or heterogeneous with respect to /.

148

time-iterative generic network always has equal number of (N) neurons at each iteration,
and constant synaptic weights {w;;} with respect to [[13, 24].

2. If [represents the layer, then the network is a spatially iterative network which usually
has different number of neurons and different synaptic weights for different levels I. The
neuron layers in between the input and output layers are called hidden layers [32, 29].

3. In certain models, each iteration (level) is corresponding to one pattern input [28].

Nonlinear Activation Functions The nonlinear activation function fi(I +1) in Eq. 2 can
be a deterministic function, winner-take-all mechanism, or a stochastic decision (for simpler
notation, we will denote the position and iteration invariant activation function as f). Thereare
three popular deterministic nonlinear activation functions for Eq. 2: thresholding, squashing,
and sigmoid. Typical examples of f;(u;(I + 1),8;(I + 1),a;(l)) are shown below:

Thresholding: [33, 32, 13]
fo= e if w(I+1)>-6;,(1+1)
T ey if w(l+1)<—0;(1+1)
Squashing: [24]

k1 [w(l+ 1) + 6,1+ D]ler — ai(D)] = k2 ai(])
if w;(I1+1)> —6;

Fo =Y kw4 1) + 00+ Dlas(l) — ea] — k2 ai(])
if ’U,,'(l + 1) < —0,’(1 + 1)
Sigmoid: [29]
fi .

1 4 e—uill+1)—0:(1+1)

In some applications, winner-take-all type of nonlinear mechanism are adopted [17, 10, 30]:

) _ 1 if u;(l+1)>uk(l+1)Vk7€i
ai(l+1) = { 0 if else

Note that the function is more general than Eq. 2, since it depends not only u;({ + 1) but also
all other w;(l + 1),Vj # ¢. Nevertheless, this can be easily implemented by lateral inhibitions
so that only the neuron receives largest input is activated. The typical stochastic decision rule
may be represented as

Pr(ai(l+ 1)) = fi(ui(1 + 1), 6;(1+ 1), ai(l))

where Pr(-) represents the probability function [1, 28].

1.2 Learning Phase of the Generic ANN Model

In the learning phase, the synaptic weights for all the connections are also iteratively updated.
The weight updating problem, sometimes called credit assignment problem for network in
Figure 1(b), is to find the synaptic weights (sometimes also external inputs) which optimize
certain predefined measure function E based on a set of input training patterns. The learning
phase usually.involves.two.steps: In the first step, the input training patterns are processed by

149

the network based on the retrieving phase equations and generate some actual responses. In
the second step, the weights are updated according to the responses generated and the chosen
learning rules. Recursive procedures are often adopted. A unified recursive weight updating
formulation (learning rule) for the generic ANN model can be expressed as following:

oF

(m+1) 7y _ (m)
w;; [_@wi. D, ni;(), ———

) ®3)

(m+1)
4
weight value w{™(l , the updating rate parameter 7;;(!), and most importantly the gradient
g 1] g J g
SE . B . .
EmaIe The updating rate 7;;(!) is introduced to regulate the rate of change of each weight

The new weight value w (D) at (m + 1)-th recursion can be determined by the current

at each recursion, it can be a global constant or can be a locally-dependent variable. In the
following sections, for simplicity, we shall use 7 to denote 7;;(1) .

Measure Function E as Training Criterion A criterion function E in Eq. 3 has to be
selected first, then the weight training may be formulated as a problem of iterative optimization
(maximization or minimization) of the function E. In order to provide more flexibility, the
measure function can be a global function E, or a local function of [, i.e., E(l). When E is a
global function, the training for weights at one level can affect that of other levels, since the
optimization is over the weithts of all levels. When FE is a local function, a hierarchical network
can be established by cascading individually optimized iterations in Eq. 3 [30, 9, 23].

Recursion Index m in the Learning Phase To distinguish from the operations for the
retrieving phase, we use a new recursion indez m for the recursive weight updating formulation
(see Eq. 3). The recursion index m may represent either a pattern index or a sweep index.

1. When the network updates the synaptic weights after the presentation of each training
pattern, then m represents the pattern recursion.

2. When the network updates the synaptic weights only after all the P training patterns
are presented, then m represents the sweep recursion.

Examples of Updating Formulation The updating formulation function ® in Eq. 3 may
be in an additive form, multiplicative form, or others. The additive formulations lead to the
gradient descent (for minimization) or gradient ascent (for maximization) approach:

oF

wi; (1) = wi()+ 775—1-1-;:;—(1—) or (4)
wii(l) <= wi(l) - n% (5)

where + is determined based on either the maximization or minimization formulation. One
popular example is the back propagation learning, an iterative gradient descent algorithm
designed to minimize the mean squared error between the the desired target values and the
actual output values [29].

150

1.3 Useful Mechanisms for Weight Training

Constant-Sum Constraints In some competitive learning applications the magnitude of
w;j(l) are bounded. For example,

Ni—1
Z w?j(l) =c
j=1
or
Ni
wij(1) >0 and Z wii(D=c
Jj=1

If the additive updating formulation is used, then updating step 7 should be carefully selected
to satisfy the constraints. Note that the convergence is not always guaranteed.

On the other hand, if {w;;({)} are non-negative, i.e., w;;(I) > 0, and satisfy either of the
following constraints,

Nija N,
Z w,'j(l) =1 or Z w,'j(l) =1
i=1 j=1

then the iterative constraint optimization problem leads to a multiplicative or additive/multiplicative
formulations [5, 4, 6, 31].

OF
(1 (D) o — 6
wii(l) <= nwi;(l) dwy (D) or (6)
8FE
e 7
Fwi(l)] M
where E should be an arbitrary polynomial of {w;;(I)} with positive coefficients.

Note that only proper choice of the updating step 7 can ensure that the new weights {w;;(1)}
satisfy the constraints and also lead to convergence. One popular example is the Baum-Welch
reestimation learning rule used in the hidden Markov models [22, 28], which iteratively choose
the weights to maximize the likelihood of the training patterns.

A possible extension of the constant-sum constraint is a weighted-sum constraint which
may be exploited to shape the network so that it would highlight or depress certain properties.

wii(l) <= nlewi;()+(1-a)w;(l) -

Back-Propagation of Corrective Signals In the multi-level ANN model, the direct gra-
dient updating of the weights in all the levels often incurs enormous computational burden.
To alleviate this burden, back-propagation of corrective signals based on chain rule derivation

may prove computationally very cost-effective. Note that the gradient term can be decomposed
into:

8E _ 9E dai(l)
8wij(l) - 3(15(1) 311).5]'(1)
— 5 ik ®

where the backward propagated corrective signal §;(1) is defined to be 62331 . The backward
propagated corrective signal can be computed directly by approximation if Le nonlinear acti-
vationrfunctionnisimotidifferentiablen33y26]. By adopting appropriate nonlinear differentiable

151

activation functions, the corrective signal é;(I) can be recursively calculated as shown below
[29]: For L—-1>1>1.

OF
da;(1)
Ny

6:(1)

Il

OE daj(l+1)
Baj(l + 1) Ba.,-(l)

=
Niy1

= Z (5]'(1 + 1) ’I‘ﬁ(l +1) (9)

j=1

This defines the basic formulation of the back-propagation of corrective signals of all the levels.
Then Eq. 9 may be used to compute the gradients.

Homogeneity Consideration in Homogeneous Iterative Model A special case of the
generic iterative network is when the synaptic weights {w;;({)} are constant with respect to [,
i.e.,

w;j(l) =w;, VI (10)
A simple way of computing the gradient is to consider only the last iteration [24, 13],
OE OFE (11)
dw;; ~ Owij(L)

However, in order to derive a more robust estimate of the gradient, some models [29, 28] adopt
a more desirable approach of averaging the gradients over all the iterations. This may be
mathematically derived as below:

OE XL: OE dwi(l)
a’w,'j =1 aw,-j(l) 8w,-j

L OE 8ai(l) dwi(l)
dai(l) dwi(l) Ow;;

=1

L dai(l)
2 6l g (12)

=1

Note that %ﬂ—gﬂ- =1.

1.4 Characterizations of Neural Network Examples

In the proposed generic modeling, neural networks may be characterized by several common
factors in the retrieving and learning phases. The factors in the retrieving phase are itera-
tion index [, and nonlinear activation function f;({). The factors in the learning phase are
recursion index m, measure function F for the training criterion, updating formulation &,
back-propagated corrective signals §;(1), and homogeneity consideration in certain models (see
Table 1). More detailed illustration of such classification method will be discussed in the next
section. .

152

anq | eseyd Fuiureo] pue ulAdLI1 B} UL PIIIPISUOD 1012t 31|} O) Fuipioooe paljIsse|d ore DM §

“sjySrom 217 aurojep oy pajdope st Suissosoad yojuq e ‘Fuinres] aatjdepe jo

peojsu] 4 “opew d1om suoljeunxordde “Aparrequenb ())f9 Burjenoped Jo (sjusta]d FUIP(OYSII) JuduTuon JO oyes 10}) £y[noyip ayy 0y
ojdurexa yiomjau [eInaN | dqr],

1=l _N.MW TN (1- :lhi:vmv..\ Yl AU.N = doomg o1g | wene PPOIN AOYIT|y
‘0 o [3g ‘et (1) ke (l0)ed = uappli|
Dot ?&«LL oN Am.i - w;v M.Inﬂmhml“ u) T:f.g.\ doomg D1SEYDO)G auuL], duUNPL uuLwzIog]
VAT = mg ‘1] b+ ' =g
Fuiuieary Ayed oN () = (1 =) L) = (1 - 1)) W19} | V-4, 19£%] 1010999(] 2INeI
‘[og) ()0 b+ () DR _N“HW t=0a : JreypuIny
189, 22uURpSIA oN (Frm — f0) NA tm — fo) w1y | V-3 oA1RIDN] £1001]], 22UBUOSDY
I o1l g b+ D W't {E=g -101 -uop aandepy
pooijroqy3ioN oN (2m — ‘o) (O — fo) w1 g IV-oye], | 2ale1d)] dey 21nyedy]
Fupjuiyg ‘(g1 ‘21) g b+ o 1y _ua_HWm = -uoN pazuedi0-Ps
< ((1 = 1)¥o— oN [92 4+ ())51m [()frn .H_HL 99— doomg 194w yiomyay [enidadiad
(1= 1)u3?) Sl st A LTS -
(=2 - (1 =Deuy? W) 0 X | (re@) w0 DLy poztue810-J128
=L t .
) >= (1)*0 ‘[g2] bt ()% S =g
Fuiurear] oN (1 — ‘gz) 'g'e Tumw doamg ploysanf, awny, NIOMIDN dA17RIDOSSY
aandepy oN (1 - 'gz) —fgigtan
=L =1
. T 'e1) bt fm Sl K= ppydoy et
NI A E3N (1=n%((D*=),f Lg=1) wane | powsig auty, uopededol J-yorg
=ty ‘(71 ‘67) e un\“mW: — f1m _nL_MW =q JuD11MIY]
(g —4)-= (1) S9 X (1- ::ACV:LM.\ NA.Q) u1a))e g prowgdig 1947 J}10MIBN
‘[zt ‘62] ()tel — (1)“tm _MN_N =4 uoppededol J-yoeg
g A
0>V w_ av oN (r— DQA:MMQ) | — | urayyed | proysenyl 19fe] sunpPe NP 99131WWOY)
‘0<gv X 0 ’ ’
= (L), ‘log ‘zel L+ ())om hak =4 [outrepy safeniy
uiures o [m— - u1ayye g ysenbg aur a|npoy Surulea
. ! T N T 6 z _lq. 4 1L [MPON Ul g
aqry-epq ‘[v] L+ (7)"m WS =4 73 Krowely
Suruirea] ST oN fo(tn — 1) &5 - %) urayye Ploysa1y], | 2arjersy] aulepy
‘Iz¢ ‘eg] L+ &m wﬂmw =q -uoN 1ofe a[3uIg
SUIWILOY) (1)e "doig () = (1)'m o uorpdun gy w xopu] | }f eAlPY |] X3puj S}HIOM}DN [eIndN
yoeg uorpenurog Junepdn aInseapy uotsinoay | IvsuljuoN | uoije1ay]

153

1.5 Architectural Aspects of ANNs

This generic formulation also leads to a basic structure for a parallel neurocomputer architec-
ture and/or a universal simulation tool. Summarized below are several key considerations for
parallel processing and array architecture implementations of neural networks:

e Convergence issues of synchronous (parallel) updating of system dynamics in the retriev-
ing phase.

e The architectural design should ensure that the processing in both the retrieving phase
and the learning phase share the same array configuration, storage, and processing hard-
ware. This will not only speed up real-time learning but also avoid the difficulty in the
reloading of synaptic weights for retrieval.

e The digital design must identify a proper digital arithmetic technique to efficiently com-
pute the necessary operations required in both phases.

e The array architecture design should maximize the strength of VLSI in terms of intensive
and pipelined computing and yet circumvents its main limitation on communication. It
is desirable to find a local interconnectivity of systolic solution to the implementation of
the global interconnectivity of neural networks.

e VLSI arrays can be systematically derived from the dependency structure of the neural
network algorithms [25, 19].

e A digital design must offer a greater flexibility, so a general-purpose programmable array
architecture is derived for implementing a wide variety of neural network algorithms in
both the retrieving and the learning phases.

Based on Table 1, it may be further derived that operations in both the retrieving and
learning phases of the generic iterative ANN models can be formulated as consecutive matriz-
vector multiplication, consecutive vector-matriz multiplication, or outer-product updating prob-
lems [21]. In terms of the array structure, all these formulations lead to a same universal ring
systolic array architectures. In terms of the functional operations at each processor, all these
formulations calls for a MAC (multiply and accumulation) processor and a nonlinear operator.
The choice of arithmetic processing unit can be determined only after an extensive simulation
and numerical analysis. Preliminarily speaking, for a time efficient design, a parallel array
multiplier (with piecewise linear approximation of sigmoid functions) may still be a favored
option. For an area efficient design, a Cordic processor (which can implement both MAC and
nonlinear sigmoid function) might be a good alternative [2, 21, 14].

2 Unification of Existing Connectionist Neural Networks

This section illustrates how the generic iterative ANN models may be used as a unifying model
for the existing connectionist neural networks. The case studies include:

e An example of convergence study of parallel updating in Hopfield associative neural
networks.

e Unifying several competitive learning networks under the generic iterative ANN formu-
lation.

e A unified viewpoint of the multilayer feed-forward neural networks, especially the link
between-multilayer-perceptrons.and hidden Markov models.

154

2.1 Parallel Hopfield Associative Neural Network

A Hopfield associative neural network is a single layer (time iterative) feedback network, which
consists of N binary-valued neurons linked to each other with symmetric weights {w;; = w;;}.
In the Hopfield model, thresholding elements are added to linear associators to perform iterative
feedback auto-association tasks. Moreover, a notion of energy function is adopted to prove that
the feedback system exhibits a number of locally stable points (attractors) in the state space,
which provides a basic mechanism for signal retrieval and error correction from partial or noisy
missing information [13].

Retrieving Phase The system dynamics in the retrieving phase of a Hopfield associative
network is

u(l+1) = Zwuaa(l)
a
1 if w(l+1)>-6;
ai(l+1) = 0 if w;(l+1) < —6; (13)

a(l) if wl+1)=-

The original Hopfield associative network requires each neuron to be updated asynchronously
(sequentially) to guarantee the convergence of the system dynamics. The dynamic evolution of
the system state can be regarded as an energy minimization that continues until a stable state
(local energy minimum) is reached. To demonstrate the convergence, a notion of Liapunov
energy function is often instrumental.

In the following, we will show that synchronous (parallel) updating of all the neurons
at each iteration is also possible for non-negative definite symmetric weight matrix {w;;}.
To demonstrate the convergence of the parallel updating iterations, it is useful to adopt the
following Liapunov energy function E(I) (after the I-th updating):

E(l) = ——ZE wijai(Da;(l) - Z fiai(l)
t—l i=1

If all the neurons are updated in parallel at each time iteration, then the energy change
between any two iterations is

AE(l+1) = E(+ 1) E()
= ——-ZZanl(l + Da;(l+1) - Z 0;a:(1 + 1)
+= ZZw,, ai(Da;(1) + Zo ai())
= - Z(ai(l + 1) — ai(1)) [_Z wija;(l) + 6]

__Z(az(l +1) - a,(l))[z wij(a;(l+1) —a; O

Jj=1

= AaT(l+ 1) [u(l + 1) + 6]

Il

155

5 8T+ DW Aa(l+1)
= AE(I+1)+AE(I1+1) (14)

Since the nondecreasing thresholding functions are assumed, the signs of {Aa;({ + 1)} and
{ui(1 4+ 1) + 6;} are the same (see Eq. 13), and AE (I + 1) < 0. In order to also guarantee
AEy(I+1) < 0, the weight matrix should be a non-negative definite matrix, this can be ensured
by setting weight matrix to be

P P
wij = Y287 - @B - 1), W= [2v® — 1] [2v — 1]7 (15)
p=1 p=1
; () — 5@) ... pB7 . _
where P binary reference patterns, represented by {v\®) = [8;", 8" ,,---, BN, p=1, 2, ..., P},

are stored in and to be retrieved from the associative network. Note that the W matrix is
formed by an outer product without diagonal nullification (as opposed to original Hopfield
network [13]), so it is a non-negative definite matrix.

Learning Phase The weight determination process based on Eq. 15 can be interpreted by

the recursive weight updating formulation given in Eq. 3. The measurement function E to be
optimized bears the same form as the energy function in the retrieving phase, i.e.,

1 N N N
E = - 3 Z Z wija;(L)a;(L) — Z Biai(L)
=1

i=1 j=1
1NN N
= -3 DD wiiBiBi— Y 0if:
=1 j=1 =1
If we use the additive updating updating formulation (cf Eq. 5), then
OF n
Wi W M = Wi + 5Pib; (16)

where the the recursion index is corresponding to each training pattern used. This leads to
the simplest form of Hebbian learning rule [11], and the stored pattern {3;} are the desired
outputs (desired auto-associative retrieval information).

Instead of going through the iterative Hebbian weight updating learning procedures, Hop-
field used the ensemble average of {w;;} over P (training) pattern recursions to determine the
fixed connection weights with approximate zero statistical mean [13], this leads to the weight
determination formulation given in Eq. 15.

2.2 Competitive Learning Networks

Competitive learning is an unsupervised procedure that classify a set of input patterns into a
number of disjoint clusters in such a way that the input patterns within each cluster are all
similar to one another [12]. Most competitive learning networks are single layer feed-forward
networks using winner-take-all mechanism. It is possible to provide a unified perspective of
several competitive learning networks based on the generic iterative ANN formulation (see
Table 1). The main idea is to identify a common measurement function F used in the learning
phase of all the competitive learning networks, i.e.,

N
E= % > Bi(a; —wi)? (17)
i=1

156

Retrieving Phase Without loss of generality, the system dynamics between the inputs {;}
and the outputs {8;} in the retrieving phase of a competitive learning network is given:

No
u; = Zw,-jaj
=1
o 1 if u; > ug Vk
pi = { 0 if else (18)

where 1 < i < Ny. The winner-take-all competition mechanism (e.g., lateral inhibitions) is
used in the output layer so that only the neuron receiving largest input is activated.

Learning Phase The learning phase in the competitive learning network can also be inter-
preted by the recursive weight updating formulation (see Eq. 3 and Eq. 17).

Y
Wij < Wi — 7 _8w.,-,-
= wij+n Bi (o5 — wij) (19)

where one recursion is for one pattern. According to Eqs. 18, 19 implies that only the weights
associated with the winning neuron are updated and all the other weights remain unchanged.
This is a special feature of the competitive learning networks.

We hasten to note that the above formulation can only describe the basic feature commonly
shared by the competitive learning networks. In actuality, each individual model has almost
unexceptionally adopted certain special mechanism — see the “comments” in Table 1. Some
examples are highlighted below.

e Kohonen’s self-organized feature map [17, 18] introduced a neighborhood (whose size
slowly decreases with each iteration) of a winning neuron in a two dimensional neuron
layer. Weights associated with the winner and the neurons in the neighborhood of the
winner are all modified. This has purpose of making the neurons more responsive to the
current input pattern.

e The adaptive resonance theory (ART) by Carpenter and Grossberg [10, 7, 8] introduced
a vigilance test to adaptively create new neuron units for the incoming input patterns
which are quite different from the memorized patterns. This test requires additional
modifiable feedback weights connecting from output layer to the input layer.

e Rumelhart’s competitive learning algorithm [30] introduced a leaky learning model to
prevent the possibility of totally unlearned neurons. This is done by performing training
in Eq. 19 over all the weights in the network. However, the weights associated with the
winner get much larger n values.

e Neocognitron can be formed as a hierarchical learning system by cascading many single
layer competitive learning networks[9]. The learning for each layer is largely based on
single layer analysis. It progresses stage by stage from the input layer to the output
layer.

157

2.3 Multilayer Feed-Forward Neural Networks

Multilayer feed-forward neural networks are spatially iterative neural networks, which have
several homogeneous or heterogeneous layers of hidden neuron units between the input and
output neuron layers (see Figure 1). The weight updating for the hidden layers adopts the
mechanism of back-propagated corrective signal from the output layer (see Section 1.3).

This section provides a unified viewpoint of two popular multilayer feed-forward neural
networks: multilayer perceptrons [29] and hidden Markov models [28].

2.3.1 Multilayer Perceptrons

Retrieving Phase The system dynamics in the retrieving phase of an L-layer perceptron
can be described by the following spatially iterative equations (where the iteration index !
denotes the layer iterations):

N,
w(l+1) = Z wii (! + Daj(l)
a+1) = filull+1)+ 0,04+ 1) (20)

where 1 < 4 < Ny, 0 <1 < L -1, and fi(l + 1) is non-decreasing and differentiable.
For simplicity, the modifiable external inputs {6;({ + 1)} are often treated as special synaptic
weights {w; (! + 1)} which have clamped inputs ag(l) = 1.

Learning Phase Thelearning phase of an L-layer multilayer perceptron follows the recursive
additive weight updating formulation (see Eq. 3), i.e., gradient descent approach. Given
a pair of input/target training patterns, {aﬁ”), i=1,---,No}, {tgp), j=1,---,N }, and
p=1,---,P, our goal is to iteratively choose a set of {w;;(!), VI} for all layers so that the
squared error function E can be minimized;

1 Ny 9 1 Ny 2
E=g Y (i-a() =5 X (= 5) (21)
=1 =

To be more specific, the iterative gradient descent formulation (with pattern recursion) for the
multilayer perceptron can be written as:

oF
wall) = wil) = ol
)) dE da;(1)
= wz](l) -n mm
= wy(l)-n 5"(05?1%(%

- sl
wii (1) = 1 6:(1) fi (wi(l))a;(l — 1) (22)

where 1 <! < L, and f:(z) is the derivative of f;(z) with respect to z. The corrective signal
§;(1) can be recursively calculated as shown below (see Eq. 9): For L —1>12> 1.

Il

158

R da;(l + 1)
§i(l) = Jzzl 6;(1+1) M{;ai(!)
N L 0a;(1+ 1) du;(+ 1)
= JZ_:_l U D 1) dal)
Nij1
= 3T 5+ DA+ D) wil+ 1) (23
=1

Note that the backward initialization error signal on the top layer 6;(L) can be computed
directly without recursive formulation, i.e., §;(L) = —(t; — 3:).

2.3.2 Recurrent Back-Propagation Networks

A special case of the multilayer perceptrons is the recurrent back-propagation network, where
the synaptic weights w;;(!) = wij, V [(see Eq. 10). The recurrent back-propagation net-
work can be considered as a homogeneous multilayer perceptron with the iteration index !
interpretated as the time iteration. (In essence, it is a single layer feedback network which is
synchronously updated over a fixed (L) iterations) [29, 12].

All the derivations from Eqs. 20, 21, and 22, are applicable to the recurrent back-
propagation network. In addition, the averaging mechanism (see Eq. 12) introduced in Section
1.3 is adopted. Therefore

L 8E
'le] < wl] n ; aw”(l)
L
= wij—n 3 &0 fi(uD)a;l - 1) (24)
=1

Note that the computation of §;(!) follows the back propagation rule of multilayer perceptron
(see Eq. 23).

2.3.3 Hidden Markov Models

A hidden Markov model (HMM) is a doubly stochastic process with an underlying stochastic
process that is not observable (i.e., hidden), but can only be observed through another set of
stochastic process that produces the sequence of observed symbols [28]. From the retrieving
phase point of view, HMMs described by a trellis structure can be regarded as a homogeneous
multilayer perceptrons with a squashing type of nonlinear activation function. From the learn-
ing phase point of view, the homogeneity and constant-sum constraints can be applied to the
trellis structure to derive the Baum-Welch reestimation formulation in HMMs.
The basic components of an HMM can be represented by:

1. There are N possible states {¢;, ¢ = 1, 2, ..., N} in an HMM with transition probability
{wis}:

wij:Pr(qiathjatl——l), 121,27"'71’

159
2. The initial state probability =;:

m; = Pr(g atl=0)

3. There are possible occurrence patterns {vx} that can be observed at i-th state with
probability f;:

filor) = Pr(vk | i)

Given an input (test or training) pattern sequence O = (6(0), 6(1), --- 6(L)), and a pre-
specified HMM, A = {w;;, fi, 7;}, the retrieving phase of an HMM is to compute the occurrence
probability Pr(O|A), which allows us to choose one among several models that best matches
the observations. The learning phase of an HMM is to find a new set of A = {w;;, f;, 7}, so
that the occurrence probability Pr(O|)) can be maximized.

Retrieving Phases It is observed that the computation of the occurrence probability in the
retrieving phase of an HMM can be greatly facilitated by the trellis structure representation of
the algorithm, which leads to the connectionist network structure [16]. The system dynamics
in the retrieving phase of an HMM can thus be written:

N
w(l+1) = 3 wijei(l) (25)
ai(l+1) = fi(6(+1)) uwi(l+1) (26)

where 0 <1< L—1and 1< i< N. The activation value, a;(I) = Pr(6(0),---,6(1), g; at I | A),
denotes the forward likelihood. The initial forward likelikood a;(0) = f;(8(0))m;, 1 < i < N.
The occurrence probability can then be calculated [28]:

N N
Pr(ON) =) a(D)=)_ B

=1 =1

This again leads to the L-level feed-forward network, with ! index specifying the pattern
iteration.

Learning Phase The Baum-Welch reestimation learning algorithm is adopted in the learn-
ing phase of an HMM to adjust the model parameters {w;;, fi, 7;) to maximize the occurrence
probability of the input training pattern given the model. Given the training pattern sequence

O, our goal is to iteratively choose a homogeneous set of {w;;}, so that the likelihood Pr(O|X)
can be maximized [22, 28].

N N
E=Y a(l)=)_ B (27)
=1 i=1

Due to the constraints imposed on the weights, i.e., w;; > 0 and Zfil wy; = 1, the multi-
plicative gradient ascent updating proposed for the iterative constrained optimization tasks
[5, 6] can be adopted. As a matter of fact, most of the mathematical derivation follows that
of homogeneous multilayer perceptron except the sweep recursion is adopted [15], i.e.,

160
L
OF
v 2 g

n wij Z éi(1) aaf,((?)

dai(l) dui(l)
7 Wig E 5() 30ty Fon)

1l

n wij Z 8i(1) f:(6(D)) a;(1-1) (28)
=1

Again the back-propagated corrective (or called backward likelihood) signal §;(!) can be recur-
sively computed:

o N OE 8a;(I+1)
&) = J=21 da;(1+1) 9a;(1)
N

3= 6+ 1) £(601+1)) wy (29)

j=1

From Eq. 27, it is obvious that §;(L) = 3%5737 =1.
Unlike the back-propagation learning algorithm where 7 is not explicitly determinable [20],

the updating step # in the Baum-Welch reestimation algorithm is constrained by the standard
probability property,

N

N
dowi = 1=179); 'wu}: (D) fi(6(1) a;(1 - 1)

=1 1—1

7 E E wi; 6;(1) fi(6(D) aj(1 - 1)
=1 I=1
L N

n IZ D wij 6:(1) £i(6D))] a;(l - 1)
=1 i=1
L

n & -1) a;(1-1)
=

n Y 80 a;(D) (30)
1=0

where j =1, 2, ---, N, and it is obvious that

1

T TSR0 a)

Similarly, the updating for {fi(vk)} and {m;} can also be performed, more specifically,

;:JHJ‘L::_.«}ME I_i}bl
Y

161

L. 0E dai(D)
ft(vk) <: nf‘l k) Z aat(l) m
L
= nfilw) Y. &) u(l)
=1, 9(1):11);
L
= n > &) fi6) ui(l)
1=1, 8(l)=vy
L
= 7 Y &0 a) (31)
I=1, 8(l)=vg

3 Future Extension: Generating New Neural Networks

Based on the better understanding of the generic ANN formulation, new models may be
derived. Some multiplicative learning model may prove to be suitable for application where
a constant-sum-constraint is imposed. In the following a potential multiplicative recurrent
back-propagation network is proposed to serve this purpose.

Retrieving Phase The system dynamics in the retrieving phase of an L-iteration (time
iterative) multiplicative recurrent back-propagation network can be written:

uwl+1) = Zwu a;j(l)

ai(l+1) f,(u;(l +1)+6:) (32)

i

where 0 <! < L—1and 1< i< N. Note that, for sake of convergence, the f; should be chosen
to be an arbitrary polynomial function of u;(I+ 1) with positive coefficients [4, 31]. This model
is specifically useful for applications where constraints are imposed on the inputs/targets and
weights:

N

a;(0) >0, Vi and Zag(o) =c
i=1
N

wi;; >0, Vi,j and Zw;j =1
=0

Learning Phase The learning phase of the multiplicative recurrent back-propagation net-
work follows the same derivation of the recurrent back-propagation algorithm, except that the
weights are updated in the multiplicative formulation (additive formulation is also allowed [27]).
The goal is to maximize the measurement function E, which should be again a polynomial of
{a;(L)} with positive coefficients. One possible choice is

E= Zt a;(L) = Zt B; (33)

162

where £; > 0, Vi, and ny__l t; = c¢. This specifies the correlation between the target and the
actual outputs. The weight updating follows that of recurrent back-propagation networks:

L
OF
Wiy <= 1N Wiy _—
4 g Z} awij(l)

L da;i(l) dui(l)
Wiy 5,‘ [_—
" ; @) au,l) owy;()

L
nwii Y &(1) fi(w() a;(1 - 1) (34)
=1

where the back-propagated corrective signal §;({) can again be recursively computed (see Eq.
9).

4 Conclusion

Neural networks offer an attractive new computational tool for many applications in vision,
speech, signal processing, and robotics. Their real potential lies in the ability to learn and self-
adapt. To fully realization such potential, there is a need of reexamination of the theoretical
foundations of existing neural networks. For certain applications, novel neural networks will
be necessary. To this end, a unified formulations of iterative neural networks is proposed. The
formulation will allow us to better understand several critical issues in neural networks, such
as convergence, stability, and connectivity issues. It can also help further our understanding of
the relationship between neural networks and conventional approaches. The advanced math-
ematical theories and new computer tools based on the unified formulation should in many

ways benefit the development of the simulation and implementation tools for neural networks
research.

References

(1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9:147-169, 1985.

(2] H.M. Ahmed. Alternative arithmetic unit architectures for VLSI digital signal processors.
In VLSI and Modern Signal Processing, chapter 16, pages 277-306. Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1985.

[3] J. A. Anderson. Neurocomputing — Paper Collections. MIT Press, 1988.

[4] L. E. Baum and G. R. Sell. Growth transformations for functions on manifolds. Pacific
Journal of Mathematics, 27(2):211-227, 1968.

5] L.E. Baum and J. A. Eagon. An inequality with applications to statistical estimation for
g
probabilistic function of Markov processes and a model for ecology. Amer. Math. Soc.
Bull., 73:360-363, May 1967.

[6] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statistic.,
41:164~-171, 1970.

163

[7] G. A. Carpenter and S. Grossberg. ART2: Self-organization of stable category recognition
codes for analog input patterns. In Proc. IEEE ICNN’87, San Diego, pages II 727— 11
736, 1987.

[8] Gail A. Carpenter and Stephen Grossberg. ART2: Self-organized of stable category recog-
nition codes for analog input patterns. Applied Optics, 26(23):4919-4930, December 1987.

[9] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193-202,
April 1980.

[10] S. Grossberg. Adaptive pattern classification and universal recoding: Part 1. parallel
development and coding of neural feature detectors. Biological Cybernetics, 23:121-134,
1976.

[11] D. O. Hebb. The Organization of Behavior. Wiley Inc., New York, 1949.

[12] G. E. Hinton. Connectionist learning procedure. Technical Report CMU-CS-87-115,
Carnegie Mellon University, September 1987.

[13] J. J. Hopfield. Neural network and physical systems with emergent collective computa-
tional abilities. In Proc. Natl’. Acad. Sci. USA, volume 79, pages 2554-2558, 1982.

[14] J. N. Hwang. Algorithms/Applications/Architectures of Artificial Neural Nets. PhD thesis,
Dept. of Electrical Engineering, University of Southern California, December 1988.

[15] J. N. Hwang and S. Y. Kung. A unifying viewpoint between multilayer perceptrons and
hidden Markov models. In IEEE Int’l Symposium on Circuits and Systems, ISCAS’89,
Portland, pages 770-773, May 1989.

[16] B. H. Juang. On the hidden Markov model and dynamic time warping for speech
recogintion — a unified view. AT&T Bell Laboratories Technical Journal, 63(7):1213-1243,
September 1984.

[17] T. Kohonen. Self-organized formation of topologically correct feature map. Biological
Cybernetics, 43:59-69, 1982.

[18] T. Kohonen. Self-Organization and Associative Memory, Series in Information Science,
Vol. 8. Springer-Verlag, New York, 1984.

[19] S. Y. Kung. VLSI Array Processors. Prentice Hall Inc., N.J., 1988.

[20] S. Y. Kungand J. N. Hwang. An algebraic projection analysis for optimal hidden units size
and learning rate in back-propagation learning. In IEEE, Int’l Conf. on Neural Networks,
ICNN’88, San Diego , pages Vol.1: 363-370, July 1988. (Also accepted for publication in
Neural Networks.)

[21] S.Y. Kung and J. N. Hwang. A unified systolic architecture for artificial neural net-
works. Journal of Parallel and Distributed Computing, Special Issue on Neural Networks,
6(2):358-387, April 1989.

[22] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the application of
the theory of probabilistic functions of a Markov process to automatic speech recognition.
The Bell System Technical Journal, 62:1035-1074, April 1983.

164

[23] R. Linsker. Self-organization in a perceptual network. IEEE Computer Magazine, 21:105—
117, March 1988.

[24] J. L. McClelland and D. E. Rumelhart. Distributed memory and the representation of

general and specific information. Journal of Ezperimental Psychology: General, 114:158—
188, 1985.

[25] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.
[26] N. J. Nilsson. Learning Machines. McGraw-Hill Book Company, 1965.

[27] L. R. Rabiner. A tutorial on hidden Markov models ans selected applications in speech
recognition. Proceedings IEEE, T7(2):257-286, February 1989.

[28] L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models. IEEE ASSP
Magazine, 3(1):4-16, January 1986.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Parallel Distributed Processing (PDP): Ezploration in the Mi-
crostructure of Cognition (Vol. 1), chapter 8, pages 318-362. MIT Press, Cambridge,
Massachusetts, 1986.

[30] D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. Cognitive
Science, 9:75-112, 1985.

[31] P. F. Stebe. Invariant functions of an iterative process for maximization of a polynomial.
Pacific Journal of Mathematics, 43(3):765-783, 1972.

[32] B. Widrow and R. Winter. Neural nets for adaptive filtering and adaptive pattern recog-
nition. IEEE Computer Magazine, 21:25-39, March 1988.

[33] G. Widrow and M. E. Hoffl. Adaptive switching circuit. IRE Western Electronic Show
and Convention: Convention Record, pages 96-104, 1960.

PRACTICAL NEURAL COMPUTING FOR ROBOTS:
PROSPECTS FOR REAL-TIME OPERATION

I. Aleksander

Department of Electrical Engineering
Imperial College of Science, Technology and Medicine
Exhibition Road, London SW7 2BZ, UK.

1. Why the Recent Interest in Neural Computing?

The sudden growth of interest in neural computing is a remarkable
phenomenon that will be seen by future historians of computer science as
marking the 1980s in much the same way as research into artificial
intelligence (Al) has been the trademark of the 1970s. There is one major
difference, however: in contrast with Al which was largely an outlet for a
minority of computer scientists, neural computing unites a very broad
community: physicists, statisticians, parallel processing experts, optical
technologists, neurophysiologists and experimental biologists. The focus
of this new paradigm is rather simple. It rests on the recognition by this
diverse community that the brain 'computes’ in a very different way from
the conventional computer.

This is quite contrary to the focus of the Al paradigm, which is based
on the premise that an understanding of what the brain does represents a
true understanding only if it can be explicitly expressed as a set of rules
that, in turn, can be run on a computer which consequently performs
artifically intelligent tasks. Those who contribute to neural computing
believe that the brain, given sensors and a body, builds up its own hidden
rules through what is usually called 'experience’. When a person activates
his muscles in complex sequences driven by signals from his eyes, from
sensory receptors in his muscles and even from his ears when performing
an every-day act such as getting on a bus, or when he notices a 'polite
chill' in a colleague's voice, these are manifestations of large numbers of
implicit rules at work in the brain in a simultaneous and coordinated
fashion. In neural computing it is believed that the cellular structures
within which such rules can grow and be executed are the focus of
important study in contrast to the AI concern of trying to extract rules
from a human being in order to run them on a computer.

Neural computing therefore is concerned with a class of machines that
compute by absorbing experience, a class which in that sense includes

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Springer-Verlag Berlin Heidelberg 1991

166

the brain, but may include other machines with similar properties. It is
important to stress that neural computing scientists are not latter-day
Frankensteins in the business of making brains. They are however,
united in trying to understand computing structures that are brain-like in
the sense that they acquire knowledge through experience rather than pre-
programming. So, neural computing is not necessarily about the details
of mimicking the neurons of the brain and their interconnections, but is
more about the nature of the broad class of machines which behave in
brain-like ways, and through this, add both to our armoury of knowledge
in computing and to our ability to apply such knowledge through the
design of novel machinery.

Perhaps from all this it may be possible to ferret out a definition of
neural computing:

'Neural computing is the study of cellular networks that have a natural
propensity for storing experiential knowledge. Such systems bear a
resemblance to the brain in the sense that knowledge is acquired through
training rather than programming and is retained due to changes in node
functions. The knowledge takes the form of stable states or cycles of
states in the operation of the net. A central property of such nets is to
recall these states or cycles in response to the presentation of cues.

2. Relevance to Sensor-based Robots

Every aspect of neural computing points to its usefulness in the
marshalling of complex sensory information into symbols that can be
subjected to conventional computing which, in turn, generates robot
actions. The concept of training by example is natural to robot operation
in determining trajectories. With neural computing the training can be
extended to include this complex sensory information and distinguish
subtleties in such data.

The rest of this paper will first summarise some general aspects of the
neural computing paradigm which carry the penalty of slowness when
performed on conventional computers. The methods developed in the
author's laboratory are then described. These are better placed for
implementation and real-time performance since they are based on
conventional logic design methodology. A system that has gone into
industrial use (the WISARD) will be described. Current work which
makes use of probabilistic parameters will be presented at the end of the

paper.

167

3. Some History

There is an undoubted degree of hype associated with this field.
Phrases such as 'the dawn of a new era' are used by conference organisers
and the press talks of mew computers that are built like the brain and
really think for themselves'. But there is nothing new about neural
computing: it is as fundamental as the more conventional or ‘algorithmic'
mode. Norbert Wiener in his 1947 book 'Cybernetics' wrote:

'Mr. Pitts had the good furtune to come under Dr. McCulloch's influence
(in 1943) and the two began working quite early on problems concerning
the union of nerve fibres by synapses into systems with given overall
properties..... They added elements suggested by the ideas of Turing in
1936: the consideration of nets containing cycles...'

So some of the discussions that echo in the auditoria of contemporary
conferences were begun more than ten years before the invention of the
computer that we know and love. The McCulloch and Pitts model of the
neuron is still the basis for more neural node models (1943), and Turing's
concern about nets and cycles is the very stuff of neural computing.
Indeed the 1960s were most productive in this area. Well known is the
work of Rosenblatt of Cornell Unversity on 'perceptrons' (Rosenblatt,
1962) and the destruction of the credibility of this work by Minsky and
Papert of MIT in 1969 which led to a halt to such work in the USA.

But in Europe, neural net researchers were not as prone to the winds of
change that blew from the direction of MIT as their colleagues in the USA.
Eduardo Caianiello in Italy and Teuvo Kohonen in Finland continued to
develop an understanding of neural computers to great depth and
elegance. I too, largely through a fascination with how well and fast the
brain performs tasks of pattern recognition with components much slower
than those found in computers, continued designing machines based on
neuron models that I first defined in 1965. These are characterised by the
fact that they are easily implemented in electronics and understood
through formal logic. This has led to the commercialisation of practical
systems, and is pointing to new high-performance systems for the future
(Aleksander 1984).

Despite the historical appeal of these approaches, there is no doubt that
the work of the 'Parallel Distributed Processing' (PDP) group in the USA
has been fundamental in nailing down both the language and the targets
of the current paradigm (Rumelhart and McClelland, 1986). But what is
the rapidly expanding band of workers in neural computing hoping to
achieve?

168

4. Four Promises

There appear to be be four major reasons for developing neural
computing methods, the first of which is a rebuttal of the Minsky and
Papert criticism. Although this is not the place to debate the technical
issues, it is helpful to note that the criticism was founded on a
demonstration that there are simple pattern recognition tasks that neural
nets appeared not to be able to accomplish. It is now clear that this
conclusion was mistaken because it considered only a restricted class of
neural system. In fact, the first promise of neural computing it that it is
computationally complete. This means that, give an appropriate neural
structure, and appropriate training, there are no computational tasks that
are not available to neural nets. This does not mean that a neural net is
as efficient at performing certain tasks as a conventional computer. For
example, in order to perform multiplications, the net may have to learn
multiplication tables in the way that a human being does, but these can
be easily performed by a fast arithmetic unit in a conventional computer.
Also there are tasks for which the neural net not only outperforms the
conventional computer but is the only way of performing the task.

This leads to the second promise: functional use of experiential
knowledge. It is here that the neural net can perform functions that are
beyond the capability of rule-based, conventional systems. Typical are the
Achilles' heels of Artificial Intelligence: speech, language and scene
understanding. The problem with conventional approaches to these tasks
is either that rules are hard to find, or the number of such rules explodes
alarmingly even for simple problems. Imagine having to distinguish
betweeen the faces of two people. What information should be extracted?
What should be measured in this information? How can we be sure that
what we meaure will distinguish between the faces? Although a fair
amount of study may provide the answers to some of these questions and
when compiled into a program may actually differentiate between the
faces in question, there is no guarantee that the same measures can be
applied to another pair of faces. In contrast, 20 seconds of exposure to a
neurally based system such as the WISARD (Aleksander et al. 1984 and
as described below) will allow the net to select among a vast number of
rules (node functions) in a very short time, to provide the best
discrimination between the images in question. The third promise is
performance: rapid solutions to problems which in conventional
computers would take a long time. For example it has been possible to
solve the 'travelling salesman' problem* in many fewer steps than by
conventional (exhaustive) algorithms.

*The travelling salesman problem is the finding of the shortest route
between geographically scattered points. This is traditionally difficult for
conventional machines because it relies on trying out an astronomically
large parallel and then allowing these to interact finds solutions very
rapidly.

169

But there is a snag to the exploitation of this performance: neural
systems have actually to be built or run on general purpose parallel
machines. It is worth pointing out that machines such as the Connection
Machine (Hillis 1986) are not neural systems. They are general purpose
parallel systems that require programs just as much as any conventional
machine. But the program could be the structure of the neural net, that
is, an emulation, which due to the parallelism of the host machine,
exploits the speed with which the neural system is capable of solving
some problems. Indeed, several 'neural computers' that are appearing on
the market are emulations of this kind. A useful function that they
perform is to provide a tutorial vehicle that gives their users experience in
the way such systems work. The first serious neural computer that is
capable of solving real-life problems in real time is still to be built. There
are many opportunities open for the design of the neural node (e.g. by
optical means, conventional memory chips or special Very Large Scale
Integrated systems).

The fourth and final promise of neural computing is the provision of an
insight into the computational characteristics of the brain. This is very
much the stated aim of the authors of the PDP books. In fact, it is
becoming apparent that the nature of the research that is done in neural
computing will differ depending on whether one is concerned with the
understanding of principles and the design of machines on the one hand,
or with brain modelling on the other. In the first one of these, general
structures are investigated, while in the second, certain structure
characteristics may be ruled out of court should they not conform with
what is known of the brain, even if such structures may be
computationally highly competent. Of course some work faces both ways,
being concerned both with (as an example) the creation of novel
machinery and with providing a deeper analysis of what may be
happening in the brain when it is 'understanding' language.

5. The WISARD

The WISARD (Aleksander et al. 1984) was probably the first machine
based on neural principles to arrive on the market. It is largely an image
processing machine which is shown examples of sets of patterns together
with their classification. An example is the recognition of safe and unsafe
bayonet lamp connectors as seen through a television camera. The net is
trained to respond in one sector for safe ones and another sector for
unsafe ones.

It then builds internal rules in its 64,000 neurons which cause the net

170

to respond appropriately to previously unseen lamps. The neurons used
are of the LOGIC type first proposed by ourselves in 1965 (Aleksander
1965). A conventional Random-Access Memory is used as the neural
node. In Fig. 1 the RAM is compared to the classical McCulloch and Pitts
model of the neuron. Figure 2 shows how the WISARD is constructed out
of these devices and is compared to the historical Perceptron. Here is how
it works.

The WISARD (Wilkie Stonham and Aleksander's Recognition Device) is
the simplest possible single-layer network of logical neurons. The image
to be recognised is presented as K bits (typically these may be organised
into a 512x 512 bit matrix in the frame store of the WISARD). A group of
K/n logical neurons, where n is the number of inputs, is connected
randomly to the image bits. Such a group is called a 'discriminator’ (S)
and one discriminator for each desired recognition class is generally used.

The basic mode of learning and remembering may be formally stated as
follows. Say that at K there is an image T (1) of unit area. Starting with
all RAM locations set to zero the system is taught to recognise T (1) by
setting all the current RAM locations 'addressed ' by T (1) to 1. Say that
the discriminator is similarly trained on a second image, T (2). Given
some unknown image T (U) which overlaps bit by bit over an area A (1)
with T (1) and A (2) with T (2), it may be easily shown that the proportion
of RAMs responding with a 1 (the response of the discriminator) is:

rM=Am)"+Aa@)"-nan2)"

If yes, A (1,2)is the overlap between T(U), T(1) and T(2) which forms the
last term. This needs to be subtracted so that it is not counted twice.
Similar equations may be generated for larger training sets. They are just
bigger equations but similar in character to the above. This character is
largely defined by the following properties. If T(U) is close to any of the
training patterns, r(U) will be high. If the training patterns are similar to
one another there will be good interpolation in r(U), while if there are not,
r(U) will only be high in the vicinity of the training patterns. The key
factor is that this response is given after only one pass through the
system and therefore is equivalent to a parallel search. WISARD uses
several discriminators (one for each class) as mentioned, so the decision
can go to the the highest response, and its difference from the next
highest may be used as a measure of confidence. So, at its extremes of
operation the system can both discriminate between similar patterns and
classify together dissimilar patterns. It is the parameter n which is
crucial in determining this performance. The actual structure of the
machines is based on a patented way of using fast, state-of-the-art silicon
memory.

The patent has been purchased by a UK company which engineered the
system.into.a product which is currently used in a variety of quality

171

control and security applications. Curiously, this system has never been
marketed as a neural computer. Plans are in progress to capitalise on
this technique in building a general purpose high-performance neural
computer which will not only recognise patterns, but perfoRm the
generality of experiential knowledge-based tasks discussed earlier. This is
based on probabilistic nodes and pyramids as described below.

6. A Logical Calculus Based on Probabilistic Pyramids

In this area of work we provide a framework of three nested levels of
components: a LEARNING ATOM, a PYRAMID which is made up of
learning atoms and a NEURAL NET which is made up of pyramids.
('Higher-level' systems can be made up of neural nets, but we leave that
aside.) A NEURON is best approximated by a pyramidal structure of
atoms.

The learning atom has what seems to be an irreducible set of four
attributes. The first is an output which either fires (denoted by 1), does
not fire (0) or does not 'know' whether to fire or not (d). In the last case,
the output becomes O or 1 with equal probability, the decision whether to
fire or not being taken at discrete time intervals*. It is the addition of this
probabilistic state that is one of the factors that distinguishes this
approach from that used in the WISARD.

So 1, 0 and d are the INTERNAL STATES of the learning atom. The
second attribute is the set of n inputs, say i(1), ...i(n). The third attribute
is a variable function which uniquely associates each possible pattern of
Os and 1s over the n inputs with an internal state value (0, 1 or d) of the
atom. The function is said to be variable because of the fourth attribute
of the learning atom: its learning property. The nature of this (which also
seems to be irreducible) is that the atom must receive information (say
through the value of some variable T) as to whether, at a considered time
interval and only for the current input pattern, its response is correct
(T=1) or incorrect (T=-1). When nothing is to be done T=0. If T=1 and the
state associated with the current input is O or 1 nothing happens, as the
function is acting correctly. But if T=1 and the state associated with the
input is d, the d is changed to whatever the current (arbitrarily generated)
output many be. If T=-1 it is assumed that the atom has consistently,
over may time intervals, produced the wrong output. If the stateis O or 1,
it is changed to d. If the state is d, nothing happens as the atom is not
responsible for whatever leads to the conclusion that there is a consistent
€rTor.

*Much of our work uses several states with graded probabilites of
generation a logical 1. This has been omitted from this paper for the sake
of clarity, but without loss of generality.

172

It is noted that this definition of a learning atom is a rough
approximation to the ‘'squashing function' of Rumelhart e al. (1986,
Chapter 8) with only three probability states (0,1 and.0.5) and with no
interdependence on the way in which the firing probabilities are set for
individual input patterns. It can be shown that pyramids of such atoms
yield closer approximations to the squashing function.

A pyramid (as shown in Fig. 3) has two main parameters, N the number of
inputs for each node (the case of pyramids with different atoms is not
considered here), and D the depth (or number of layers). There is a
dependent variable, the ‘width' of the base of the pyramid W. The pyramid
learns to determine the probability of a 1 at its output atom in response
to a pattern of Os and 1s at the W inputs. The correctness or error of the
behaviour is detected at the output of the top node only and it is from this
that action flows to the other 'hidden' units. Pyramids require the
training of hidden units which is one of the most challenging aspects of
artificial neural nét studies. Hinton and Sejnowski (see Rumelhart and
McClelland 1986, Chapter 7) have suggested that in Boltzmann nets that
are symmetrically connected (i.e. if node A transmits to node B via a given
symaptic weight, then B transmits to A via the same weight) hidden units
may be treated in the same way as visible units.

Weights may be optimally adjusted by measuring the probability with
which the nodes at the ends of a weight fire simultaneously, (a) when the
net is allowed to run freely and (b) when the training information is
‘clamped' on visible (non-hidden) parts of the net. The weights are
adjusted to minimise the difference between these two measurements.
There is a serious lack of biological credence in this model: first, neurons
are not bidirectionally connected and second, supervisory elements which
retain knowledge of firing probabilities under the two stated conditions (a)
and (b) are not known to exist.

Recently much attention has been paid to the 'error-back-propagation'
method of dealing with hidden units due to Hinton, Rumelhart and
Williams (Rumelhart and McClelland 1986, Chapter 7). Here, note of an
error occurring at an output unit is propagated backwards, unit by unit,
multiplied by the weights found along these propagation paths. Such
signals are used to adjust the weights to reduce the error. This too is
biologically unreal as there are no known ways for such signals to
propagate backwords along axons.

In our logical calculus, we only assume that all the atoms in a pyramid
should receive information on whether the output is erroneous or correct
without defining special pathis for the propagation of such information.
This provides a less demanding framework for biological enquiry than
either of the two models quoted above. We call this PYRAMIDAL

173

LEARNING. It goes as follows. Every training instance consists of
applying data to all of the W inputs of the pyramid, and comparing the
output to a desired output. Initially all the atoms of the pyramid are
assumed to be in the d state for all the possible input patterns. This
means that for any given input pattern the output atom generates Os and
1s with equal probability. As the desired input can only be O or 1, T=1 is
generated by the error detector (Fig. 3) as soon as the correct output is
achieved. The learning property, discussed above, is such that all the
atoms associate their current output with their current input. This
ensures that if the data of the training instance were to be presented
again, and the system were no longer in the training mode, then all the
atoms would enter their learnt state, generating the correct output as the
overall output of the pyramid. Small changes from training inputs reduce
the probability of firing in the trained way by an amount that may easily
be calculated.

At the early stages of learning the degree of arbitrariness offered by the
d states is high. This diminishes as these states are committed to O and
1. Clearly, this form of training ensures that the states of the learning
atoms are always correct with respect to the past sequence of training
instances. Errors can only occur with respect to as yet unseen instances.
These are characterised by the pyramid's consistent inability to generate
the desired output. On detecting such an error the error detector floods
the pyramid with the T=1 sign returning the currently addressed atom
states responsible for the error to the d state. We state a law without
proof.

7. The Law of Pyramidal Learning

Pyramidal learning converges, provided that the desired fuction can be
achieved by the pyramid.

This is not the place for providing rigorous proofs of our findings; suffice
it to say that the above law is based on the fact that, at most, only one
memory state per atom reverts to the d state whenever an error is
detected, preserving other states that are still correct with respect to the
prior training sequence. The learning is therefore conservative of
successes, leading to convergence, albeit less rapidly as the desired
function is approached than at the beginning of the process.

174

8. The Future: Neural Robotics?

The considerable exaggeration that surrounds much current work on
neural computing is by no means constructive. However, it is of some
consolation that it is self-defeating as well. Many laboratories new to
neural computing are discovering that it is not fruitful to cobble together
any simulation of a neural net, and then hope that it will compute the
first thought-of task. This quickly diverts the thrust towards a need to
understand what can and cannot be expected of a particular net, and the
way the parameters of a net are optimised. It is the aim of many
dedicated scientists to contribute to such understanding, which is the
best way of fighting the exaggeration.

In robotics, it may be important to revisit the 'blocksworld' notion as
framed by Winograd (1973). This methodology relied first, on a highly
stylised and simplified environment for the robot so that symbols such as
'box' and 'red' and 'pyramid' could be extracted from some digitized image.
Second, it used a logic-based extraction of 'understanding' from simple
sentences such as 'put the pyramid on the red box'. The methodology
could not extend beyond its assumed simplicity. Neural computing
provides an alternative approach to both of these problems. There is
promise of being able to extract features from much more complex scenes
(e.g. 'road', 'firtree', 'picket fence') and of rapid extraction of meaning from
more elaborate sentences.

So what is likely to be the ultimate neural computing architecture of the
future? This is an area on which researchers may differ, mainly because
of their dedication to the understanding of specific approaches. But one
thing does seem to be evident. Neural computing of the future is not
likely to be a replacement of conventional computing and Al programs,
but is likely to form a complementary technology. It would border on the
frivolous to create, with difficulty, neural computations that can be
performed with ease through conventional methods. The key issue
however is that the two methods must be made to exist under the same
roof (or in the same metal box). So the ultimate challenge for experts in
computer architecture is to exploit the two technologies within the box,
and present a single, flexible interface to the user. If they succeed, we
may well witness a quantum step forward in the ease with which humans
will be able to interact with machines and hence a step forward in the
usefulness of the machines themselves.

175

References

1. Wiener, N.: Cybernetics, MIT Press, Cambridge MA, 1947

2. McCulloch, W.S. and Pitts, W.: A Logical calculus of the ideas
imminent in nervous activity’. Bull, Math. Biophys., Vol 5, pp 113-115,
1943.

3. Rosenblatt, F.: The Principles of Neurodynamics, Spartan Books,
New York, 1962.

4. Minsky, M. and Papert, S.: Perceptrons: an introduction to
computational geometry. MIT Press, Boston, 1969.

5. Aleksander, 1., Thomas, W.,V., and Bowden P.A. WISARD, a radical
step forward in image recognition. Sensor Review, vol 4, no. 3, pp. 120-
124.

6. Rumelhart, D.E. and McClelland J.L. (éds.) . Parallel Distributed
Processing, Vol 1 & 2 MIT Press, Cambridge, MA, 1986.

7. Hillis, W. D.: 'The connection machine, MIT Press, Cambridge, MA,
1986.

8. Aleksander, I.: Fused adaptive circuit which learns by example
Electronics Letters, August 1965.

9. Winograd, T.: 'A procedural model of language understanding’,
Schank, R.C. and Colby, K.M. (eds.) In computer models of thought and
language, . pp. 152-186, Freeman, San Francisco, 1973.

176

THE MCCULLOCH AND PITTS MODEL 1943

Wi

w2
i2 @ «74 SUMMING THRESHOLD| F

DEVICE DEVICE
T

WN

F=tiff 5w > T
J

Training: (Widrow/Hoff 1960) Must know desired output 0 or 1
for a particular input pattern of Os and 1s.

Then measure Y, and distribute the duty to remove the error among
the active weights (by some degree).

THE RAM MODEL 1965

= M T eeeen T
F 1 123 N
F M 0 0 e i
2 123 N
i RAM |—»F
: Data :
F— o AM L e i
2N 1 2 3 N
Address Data
In Mj =0orf1

Training: Must know desired F
for particular input.
Apply desired value to Data In

Figure 1: Logic-NeuralsNets: the RAM-Neuron Analogy

177

PERCEPTRON [Arbitrary, Fixed, Logic Unit

TRESH.

TRESH.,

WISARD

P Decision Histogram

Figure 2: The WISARD-PERCEPTRON Analogy

‘plwelthd onsiiqeqoid-o1bo1 v g ainbi4

178

¢ aN >

AN\
plwesAd
au} Jo yidap ‘a

\ 4
apou Jad sindut N —>
N1d 10 uoinau-\vH d
v N

1 HO10313a
HOYHA

Self-Organizing Neuromorphic Architecture
for Manipulator Inverse Kinematics

Jacob Barhen Sandeep Gﬁlati

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

ABSTRACT

We describe an efficient neuromorphic formulation to accurately solve the in-
verse kinematics problem for redundant manipulators, thereby enabling devel-
opment of enhanced anthropomorphic capability and dexterity. Our approach
involves a dynamical learning procedure based on a novel formalism in neural
network theory: the concept of "terminal" attractors, that are shown to corre-
spond to solutions of the nonlinear neural dynamics with infinite local stability.
Topographically mapped terminal attractors are then used to define a neural
network whose synaptic elements can rapidly encapture the inverse kinematics
transformations using @ priori generated examples and, subsequently gener-
alize to compute the joint-space coordinates required to achieve arbitrary end-
effector configurations. Unlike prior neuromorphic implementations, this tech-
nique can also systematically exploit redundancy to optimize kinematic criteria,
e.g. torque optimization, manipulability etc. and is scalable to configurations of
practical interest. Simulations on 3-DOF and 7-DOF redundant manipulators,
are used to validate our theoretical framework and illustrate its computational
efficacy.

1. INTRODUCTION

The successful deployment of industrial teleoperated and reprogrammable robots is lead-
ing to a rapidly increasing interest in applying this technology to more exacting scientific
applications in unstructured and hazardous environments, such as space missions, mainte-
nance activities in nuclear plants, undersea operations etc. In these envisioned applications,
significantly enhanced capability, dexterity and reliability, is essential to achieve real-time
operational responses in a semi-autonomous decision environment characterized by severe
constraints on size, weight and power consumption. Despite a tremendous spurt in research
activity and growing literature on the subject, provision of the above attributes entails a level
of paradigmatic complexity far exceeding that what can be provided by the existing model-
ing strategies. Traditional computing paradigms have typically focussed on problems that

NATO ASI Series, Vol. F 66

Sensor-Based Robots: Algorithms and Architectures
Edited by C.S. George Lee

© Springer-Verlag Berlin Heidelberg 1991

180

are clearly defined and deterministic, and can best be handled by computers employing
rigorous, precise logic, algorithms or production rules. But, the anthropomorphic capability
and perception necessitated by the unstructured applications to be performed by the next
generation intelligent machines entails providing for situations which may have received no
prior treatment or thought. These problems are in general ill-posed, ill-conditioned and
plagued with incomplete information and uncertainty and often must satisfy large numbers
of competing constraints. These problems typically involve acquisition and processing of
large amounts of sensory data. It is however observed that living systems handle analo-
gous problems of sensor-motor coordination and vision with remarkable ease, and reveal
a spontaneous emergent ability that enables them to adapt their structure and function.
Consequently, the latter class entails a level of computational complexity that necessitates
recourse to alternate paradigms which are inherently amenable to emulating characteristics
of concurrent processing.

Artificial neural networks are defined as massively parallel adaptive dynamical systems
modeled on the general features of biological networks, that are intended to interact with
the objects of the real world and its statistical characteristics in the same way the biological
systems do. In contrast to the existing notions on tmperative and symbolic comput-
ing, the potential advantages of neuronal processing arise as a result of their ability to
perform concurrent, asynchronous and distributed information processing, in a dynamic
self-organizing manner typical of living systems. These individual neurons having simple
properties, and interacting according to relatively simple rules can accomplish collectively
complex functions such as generalization, error correction, pattern classification, learning
etc. However their paradigmatic strength for potential applications, which require solv-
ing intractable computational problems and adaptive modeling, arises from their emergent
ability to achieve functional synthesis, i.e., extract invariances and establish relationships
between multiple continuous-valued inputs and outputs, based on a presentation of a large
number of examples. Once the underlying invariances have been encaptured in the synaptic
interconnections, the networks can generalize to solve arbitrary problem instances. In addi-
tion, the operational versions of these trained networks can be dynamically "regularized" or
adapted to overcome additional constraints imposed by the environment or the particular
application. Thus, neural networks provide an adequate basis for developing a rudimen-
tary learning capability towards the design of autonomous robots that can self-organize and
adapt to changes in structure and function.

Also, integral to the realization of any application envisioned for intelligent robots is the
ability to dexterously and adaptively manipulate in a nonstationary task workspace. There
are two aspects to the provision of this capability. First, given the initial and final end-
effector task coordinates, simultaneously generate, in real-time a Cartesian-space trajectory
that can achieve a goal (the path planning problem), and a set of joint space trajectories
which cause the end-effector to follow the desired trajectory (inverse kinematics problem)
while satisfying additional constraints. Secondly, provide adaptive mechanisms for respond-
ing to any unforseen changes in the workspace or the manipulator geometry. In addition,
some applications may require online strategies for optimizing trajectories with respect to
certain kinematic constraints, e.g., obstacle avoidance, servo-motor torque minimization,

181

joint availability etc. Currently, there is no analytical formulation that can satisfactorily
address the problem in real-time.

In this paper we have chosen to address the simplest problem which coalesces two of the
issues fundamental to the development of autonomous intelligent robots, namely, enabling
a rudimentary learning capability and improving dexterous manipulation by redundancy. In
particular, we demonstrate a powerful new neural learning paradigm for solving a large
class of "inverse problems", e.g. manipulator inverse kinematics, commonly encountered
during the design of real-time, adaptive systems operating in redundant environments. The
organization of the remaining paper is as follows. In section 2 we briefly review some of the
existing strategies for solving the inverse kinematics of redundant manipulators in order to
motivate a departure from the traditional jacobian-manipulation based strategies. We also
review proposed neuromorphic approaches to this transcedental function approximation
problem, and discuss some of the currently available implementations based on backward
error-propagation type algorithms. In section 3 we specify the neural network architecture,
and derive corresponding learning equations in terms of new algorithms for constrained
differential optimization which strictly enforce the Lyapunov stability criteria. In particular,
we introduce the notion of "terminal attractors” based on non-Lipschitzian dynamics, and
describe their implications towards neural modeling. Section 4 presents the results of our
investigation with 3-DOF and 7-DOF redundant manipulators. The last section presents
the conclusions of this paper.

2. MANIPULATOR INVERSE KINEMATICS

A forward kinematics operator @ is defined as a nonlinear differentiable function which
uniquely relates a set of Ng joint variables, g, to a set of Nx task space-coordinates,
Z: ¥ = &(g), assumed by the manipulator. However, the primary practical interest in
manipulator kinematics is the inverse problem,

g = &) (2.1)

i.e. determine one or more sets of joint configurations which take the end-effector into a
desired task position and orientation in the operational workspace. Though the kinemat-
ics equations relating unknown joint-coordinates to specified end-effector coordinates are
nonlinear, closed form analytical solutions can be found for a number of non-redundant
manipulators with special architecture. In theory, complete positioning capability can be
achieved in Cartesian space using only six degrees of freedom. However, most manipulators
have degenerate configurations or kinematic

singularities, near which small displacement of the end-effector require physically unre-
alizable joint speeds, thereby leading to severe inaccuracy in the resultant motion. Since
these singularities effectively lead to a loss of usable workspace and capability, there is a
strong incentive to design redundant robots with additional degrees of freedom. Thus, a
robot manipulator is kinematically redundant if the number of its degrees of freedom is
greater than the dimension of the end-effector task space. In contradistinction to other
engineering contexts, where redundancy per se, implies fault-tolerance, i.e component
duplication allowing for continued system functionality in the event of an element failure

182

or superfluity i.e, an unneeded excess capacity, redundancy in robotics is determined rel-
ative to the task [5]. For example, a 6-DOF manipulator could be redundant with respect
to tasks with symmetry about one axis, while an arm with 3 or more joints is redundant
for achieving any end-effector position in a two-dimensional space. The major objective
motivating introduction of redundancy in robot design and control is to use the additional
degrees of freedom to improve performance in complex and unstructured environments.
It helps overcome kinematic, mechanical and other design limitations of non-redundant
manipulators, and simultaneously satisfy additional constraints, such as obstacle avoidance
[15], minimization of actuator torques [13], singularity avoidance [1], providing greater dex-
terity [6], minimization of kinetic energy, improvement of some measure of manipulability,
etc.

However, incorporation of redundancy injects additional complexity into the problem.
For redundant manipulators, the kinematic equations relating the specified end-effector task
coordinates to the unknown joint angles may not have a unique solution, and in general
the problem is both ill-posed (see Fig. 1) and ill-conditioned. Often an infinite number of
joint-configurations can be obtained to satisfy a given end-effector configuration. However,
it can be shown [5] that the infinity of solutions can be mapped into a finite set of manifolds.
Because of this infinity of solutions, many redundant manipulator investigators have chosen
to focus on the instantaneous or differential kinematics, which uses a jacobian-matrix to
relate end-effector velocities to the joint velocities. The jacobian is defined as

z = Ja)q (2.2)

For redundant robots the manipulator Jacobian is not uniquely invertible, and pseudo-
inverse techniques can be used to select a solution from the infinity of possible solutions
in the null space of J(§). Eq. (2.2) is often referred to as the inverse kinematics solution,
although (2.1) is the true inverse kinematics problem.

Given a desired end-effector velocity, z, the joint velocities can simply be determined
by:

i = @3 (2.3)

where J T(q) is the pseudo-inverse, or a weighted pseudo-inverse, of the manipulator Jaco-
bian matrix. This redundancy resolution solution minimizes a weighted quadratic norm of
instantaneous joint velocities. The end-effector velocities are typically generated by a path
planning algorithm, and the joint velocities computed by (2.3) are used as the reference
input to a joint-space control system.

This solution can be modified by adding a null space component to the joint velocities
[17]:

i = @i + (1 - @Iz (2.4)
where 7 is an arbitrary vector. The term (I — J f(q)J (g)) projects this arbitrary vector into

the null space of the manipulator. Physically, any motion in the null space is an instanta-
neous internal motion of the manipulator which causes no motion of the end-effector. Many

183

redundancy resolution criteria can be developed as potential functions, and z might be the
gradient of the resolution potential function, ie.,, Z = aV¥(q) , where « is a weighting
factor. Then for a given end-effector configuration, the gradient of this function is used to
control joint velocity in the redundant directions, in a manner that forces the manipulator
to seek an optimal configuration. However, the pseudo-inverse resolution techniques are
generally not cyclic [1,15], i.e. these techniques do not generate closed joint-space trajec-
tories corresponding to closed end-effector trajectories, thereby posing a serious limitation
for practical implementations. Other researchers have used the null space of the jacobian,
which corresponds to the self-motion of the robot, to optimize various performance criteria.
For example, Liegeois [17] has developed a gradient projection scheme that utilizes the null
space of the Jacobian to optimize a joint-position dependent, scalar performance criterion.

Recently focus has been on redundancy resolution techniques based on global or
local resolution of redundancy. The primary objective is to determine the motion of the
joints to simultaneously achieve end-effector trajectory control while optimizing an addi-
tional kinematic constraint. Hollerbach and Suh [13] have suggested that extra degrees
of freedom be used to minimize the magnitude of applied torque during motion, thereby
resolving redundancy at the acceleration level. Whitney [25] has resolved redundancy at
the velocity level by minimizing the kinetic energy of the manipulator. Yoshikawa [26]
proposed a powerful geometric technique that uses kinematic redundancy to increase the
end-effector manipulability. In a similar vein, Chiu has exploited redundancy induced pos-
ture variation to maximize the coincidence of optimal directions of the manipulator with
those of the task geometry. Chang [6] developed an extended Jacobian technique to op-
timize joint rotations for dexterous manipulation. Klein et al [15] on the other hand have
focused on improving obstacle avoidance. Dubey et al [8] have used the gradient projection
algorithm to improve the efficiency, mechanical advantage and flexibility of the manipu-
lator. Nonetheless, existing methods are in general very expensive computationally, and
are unable to find global redundancy resolution optima with respect to multiple criteria in
real-time. Also the manipulators can have more than one distinct internal motion for a
given end-effector location but the instantaneous methods only optimize over one internal
motion, and therefore can miss the true optimum which lies on another internal motion [5].

In the absence of closed form solutions, off-line iterative approximation techniques based
on "local-methods" have been used to solve the inverse transformation problem. In this con-
text, Goldenberg et al [9] have proposed an "augmented task method" that uses a modified
Newton-Raphson method to simultaneously obtain all the joint variables. They partition the
augmented Jacobian matrix into an invertible non-redundant component and a redundant
component to obtain approximate bounds on the magnitude of the joint angles. A nonlin-
ear constrained optimization is then performed to determine the angular displacements for
the redundant joints by satisfying some auxiliary criteria. The resulting values are used to
compute the Newton-Raphson correction that minimizes an error-residual between desired
and current end-effector coordinates. Despite its versatility, this techniques suffers from
algorithmic singularities, since it fails to ensure the non-singularity of the Jacobian-matrix
partition prior to start of each iteration. Also, for a large number of degrees of freedom, the
nonlinear optimization algorithm during each iteration induces a significant computational
complexity. T

184

In a significantly different approach Burdick [5] conducts a topological and geometrical
analysis of the kinematics of redundant manipulators. Formulating inverse kinematics as a
global manifold mapping problem, he uses the singularities of the forward kinematics to par-
tition the configuration space manifold into disjoint regions. The topological characteristics
of these regions and their forward mapping are then used to rigorously analyze kinematic
properties, such as bounds nature and number of singularities that must be encountered
along an arbitrary cyclic path and bounds on the number of inverse kinematic solutions.
Currently formal procedures are being developed for translating this qualitative insight to
quantitative algorithms that could aid the design and control of redundant manipulators.

In contrast to the algebraic and iterative strategies mentioned above, neuromorphic
approaches to the inverse kinematics problem entail systems composed of many simple
processors ("neurons"), fully or sparsely interconnected, whose function is determined by
the topology and strength of the interconnections. The synaptic elements of such neural sys-
tems must capture the transcendental kinematic transformations using a prior: generated
examples enabling subsequent generalization to other points in the workspace. Thus, the
inverse transformation equations do not need to be explicitly programmed or derived. Once
they have been learned, the network’s inherent self-organizing abilities enable it to adapt to
changes in the environment, e.g. planning joint trajectories in the presence of obstacles, or
to any unforseen changes in the mechanical structure of the manipulator, with little effort
[14]. Within a neuromorphic framework, a solution of the inverse kinematic involves two
phases, a training phase and a recall phase. The training phase involves encoding the in-
verse mapping in the network’s synaptic weight space, through repeated presentations of a
finite set of @ priori generated examples, linking cartesian space end-effector coordinates
to the corresponding joint angles. Once the network has acquired the nonlinear mapping
imbedded within the training set, it can be used to rapidly recall, or generalize the joint con-
figuration corresponding to any arbitrary cartesian-space orientation within it’s workspace
of training, thereby eliminating the intensive computational overheads that plague the ex-
isting iterative techniques. Also, once the training cycle is completed, the time required to
obtain a solution depends in a weak fashion on the number of degrees of freedom.

In the past, Josin [14], Guez et al [10] and Tawel et al [24] have applied this generic
neuromorphic paradigm to the inverse kinematics problem for a 3-DOF redundant ma-
nipulator. In particular, they train a heteroassociative, multi-layered feed-forward neural
network using the backpropagation algorithm [22]. The following principle is commonly
used during the training process. When the system produces a wrong output on presenta-
tion of an I/O pair, the learning update rule simply changes each we<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>