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Preface 

Most industrial robots today have little or no sensory capability. Feedback is limited to 
information about joint positions, combined with a few interlock and timing signals. These 
robots can function only in an environment where the objects to be manipulated are precisely 
located in the proper position for the robot to grasp (i.e., in a structured environment). For 
many present industrial applications, this level of performance has been adequate. With the 
increasing demand for high performance sensor-based robot manipulators in assembly tasks, 
meeting this demand and challenge can only be achieved through the consideration of: 1) 
efficient acquisition and processing of intemaVextemal sensory information, 2) utilization and 
integration of sensory information from various sensors (tactile, force, and vision) to acquire 
knowledge in a changing environment, 3) exploitation of inherent robotic parallel algorithms 
and efficient VLSI architectures for robotic computations, and finally 4) system integration 
into a working and functioning robotic system. This is the intent of the Workshop on 
Sensor-Based Robots: Algorithms and Architectures - to study the fundamental research 
issues and problems associated with sensor-based robot manipulators and to propose 
approaches and solutions from various viewpoints in improving present day robot manipula­
tors in the areas of sensor fusion and integration, sensory information processing, and parallel 
algorithms and architectures for robotic computations. 

This Workshop was held on October 12-14, 1988, at Chateau de Bonas, Bonas, France, 
and was held in conjunction with another NATO Advanced Research Workshop on 
Knowledge-Based Robot Control, organized by Professor George N. Saridis of Rensselaer 
Polytechnic Institute and Professor Harry E. Stephanou of George Mason University, which 
was held at the same location on October 10-12,1988. Both Workshops addressed a common 
theme on October 12 - Sensor Fusion. The purpose of holding these two Workshops back to 
back was to reinforce each Workshop's findings and to integrate the results since they are 
closely interrelated. 

A total of 30 participants attended the Workshop with 14 speakers, 12 participants, and 4 
committee members. Each day of the Workshop was devoted primarily to a brief presenta­
tion of research results followed by a discussion in each of the three major areas in sensor­
based robots: sensor fusion and integration, vision algorithms and architectures, and neural 
networks, parallel algorithms and control architectures. This book includes all the twelve 
papers that were presented at the Workshop. 

A total of five papers were presented at the Workshop addressing problems in sensor 
fusion and integration, such as sensing with uncertainty, sensor modeling, description, 
representation, and integration of sensory information in multisensor environment. Only 
three papers were included in this book and the other two papers were included in the NATO 
ARW book, Knowledge-Based Robot Control, edited by Professors G. N. Saridis and H. E. 
Stephanou. The first paper, "An Integrated Sensor System for Robots," by Rembold and 
Levi, describes an experimental autonomous mobile system with sensors, called KAMRO 
(KArlsruhe Mobile RObot), for manufacturing applications. The paper details the 
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architecture and functions of the sensor system of KAMRO. The second paper, "Robot Tac­
tile Perception," by Buttazzo, Bicchi, and Dario, describes an active or exploratory sensing 
strategy for a tactile sensor in a 4 DOF "hand." The paper describes an approach for decom­
posing complex tactile operations into elementary sensory-motor actions, each of which 
extracts a specific feature from the explored object. The third paper, "Uncertainty in Robot 
Sensing," by Grant, describes approaches and possible solutions for dealing with the inherent 
uncertainty that is associated with the modeling, planning and motion of manipulators and 
workpieces. 

For the vision algorithms and architectures session, algorithms and architectures of 
model-based and/or knowledge-based vision systems were addressed to add intelligence to 
robotic systems. A total of four papers were presented in this area. The paper, "Robotic 
Vision Knowledge System," by Wong, describes the use of local features and geometric con­
straints for constructing knowledge-based vision system for object recognition. The paper, 
"Algorithm for Visible Surface Pattern Generation - a Tool for 3D Object Recognition," by 
Majumdar, Rembold, and Levi, describes the use of a CAD model for modeling and the 
manipulation of 3D objects which can be transformed and used for vision recognition. The 
paper, "Knowledge-Based Robot Workstation: Supervisor Design," by Kelley, describes a 
knowledge-based system for planning and scheduling tasks to be executed on various robotic 
workstations. The paper, "RobotlVision System Calibrations in Automated Assembly," by 
King, Puskorius, Yuan, Meier, Jeyabalan, and Feldkamp, describes a fully-implemented 
vision-guided robotic system. The robot (Merlin robot) is equipped with a pair of CCD cam­
eras for automated assembly tasks. 

For the neural networks, parallel algorithms and control architectures session, a total of 
five papers were presented. The paper, "A Unified Modeling of Neural Networks Architec­
tures," by Kung and Hwang, proposes a unified modeling formulation for a variety of 
artificial neural networks (ANNs), which leads to a basic structure for a universal simulation 
tool and neurocomputer architecture. The paper, "Practical Neural Computing for Robots: 
Prospects for Real-Time Operation," by Aleksander, describes the use of a neural machine 
called WlSARD for pattern classification and its extension to experiential knowledge-based 
tasks. The paper, "Self-Organizing Neuromorphic Architecture for Manipulator Inverse 
Kinematics, " by Barhen and Gulati, proposes a novel neural learning formalism, based on 
"terminal attractors" for solving a large class of inverse problems, including the inverse 
kinematics of redundant robots. The paper, "Robotics Vector Processor Architecture for 
Real-Time Control," by Orin, Sadayappan, Ling, and Olson, describes a restructurable VLSI 
robotic vector processor (RVP) architecture, which exploits the parallelism in the low-level 
matrix-vector operations in robot arm kinematics and dynamics computation. Interconnec­
tion of multiple RVPs can be used to match the computational requirements of specific robot 
control strategies. The paper, "On the Parallel Algorithms for Robotic Computations," by 
Lee, describes the inherent parallelism in robotic computation which was exploited to 
develop efficient parallel algorithms to be computed on SIMD machines for controlling 
robots. Finally, a report on the group discussion entitled "Neural Networks in Robotics"was 
written by Torras. 
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The presentations and discussions at this Workshop only present a small sample of solu­
tions for an important research area of algorithms and architectures for sensor-based robots. I 
expect the research in this area to continue to grow, and more NATO Advanced Research 
Workshops about this area may be appropriately scheduled in the near future. 

Finally, I would like to take this opportunity to thank Dr. Norm Caplan of the National 
Science Foundation (USA) for his continued encouragement throughout the process of organ­
izing and realizing this Workshop. I also would like to thank the Organizing Committee, Pro­
fessor R. L. Kashyap of Purdue University, USA, Professor F. Nicolo of University of Rome, 
Italy, ProfessorU. Rembold ofUniversitiit Karlsruhe, FRG, and ProfessorH. E. Stephanou of 
George Mason University, USA, for their hard work for putting the program together. Spe­
cial thanks are also due to Ms. Dee Dee Dexter for her clerical work associated with the 
Workshop and for putting all the manuscripts together. Last but not the least is Professor G. 
N. Saridis who deserves special thanks for his advice on organizing the Workshop, without 
whose continued push for perfection, the Workshop would not have been a success. 

C. S. George Lee 
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In this paper the architecture and functions of the sensor system of an 
autonomous mobile system are described. The sensor system supports the 
operation of the planning, execution and supervision modules necessary to 
operate the robot. Since there is a multitude of concepts of vehicles available 
the sensor system will be explained with the help of an autonomous mobile 
assembly robot which is being developed at the University of Karlsruhe. The 
vehicle contains a navigator, a docking module and an assembly planner. The 
driving is done with the help of cameras and sonic sensors in connection 
with a road map under the direction of the navigator. The docking maneuver 
is controlled by sensors and the docking supervisor. The assembly of the two 
robot arms is prepared by the planner and controlled by a hierarchy of 
sensors. The robot actions are planned and controlled by several expert 
systems. 

1 Introduction 

For several years, various autonomous mobile robots are being developed in 
Europe, Japan and the United States. Typical areas of application are 
mining, material movement, work in atomic reactors, inspection of under­
water pipelines, work in outer space, leading blind people, transportation of 
patients in a hospital, etc. The first results of these research endeavors 

NATO AS! Series, Vol. F 66 
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indicate that many basic problems still have to be solved until a real 
autonomous mobile vehicle can be created; e.g. the development of an 
integrated sensor system for the robot is a very complex effort. To recognize 
stationary and moving objects from a driving vehicle is several orders of 
magnitude more complex than the identification of workpieces by a 
stationary camera system. In most cases the autonomous system needs 
various sensors. For processing of multi-sensor signals, science has not 
found no good solution to date. An additional problem imposes the 
presentation and processing of the knowledge needed for operating the 
sensor system. Unexpected obstacles have to be recognized by the sensor 
and interpreted. If necessary, an alternate coarse of action has to be 
planned. 

Seldom, an autonomous system is used for driving missions only. In general, 
it has retrieve parts from a storage, to bring them to a work table and to 
assemble them to a product, Fig. 2. All work has to be done autonomously, 
according to a defmed manufactUring plan which is given to the system. In 
this article, the sensor module for an autonomous mobile system is being 
described, whereby the functions are explained With the help of the 
Karlsruhe Autonomous Mobile Assembly Robot (KAMRO). 

2 Autonomous Mobile Systemsfor Manufacturing 

There are various applications for autonomous systems in manufacturing. 
Most of the early projects concerned with this SUbject, involved the 
conception and implementation of vehicles for the movement of materials 
and workpieces. Hitherto, the efforts only succeeded in developing semi­
automatic vehicles which can follow a path laid out by a guide system, such 
as an induction loop or a painted stripe on the floor. This type of guidance 
needs a simple sensoric and control strategy to steer the vehicle. The 
developments allowed to significantly increase the flexibility of 
manufacturing systems, whereby various manufacturing orders may be 
processed by a different combination of machine tools. Thus, it is possible to 
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conceive simple programmable manufacturing facilities. However, the 
motion of the vehicle· is confined by the guide system. 

With autonomous mobile robots it is possible to develop manufacturing 
plants of great flexibility. Any combination of machine tools may be selected 
according to a virtual manufacturing concept. E.g. an autonomous assembly 
system equipped with robot arms is capable of working at various assembly 
stations. For welding or riveting tasks, the robot can move along a large 
object, such as the hull of a ship and perform the desired operations. An 
increase in flexibility can only be obtained by the use of knowledge based 
planning, execution and supervision modules which are sensor supported. In 
addition, omnidirectional drive systems have to be conceived, capable of 
giving the vehicle a three-dimensional flexibility, including turning on a 
spot. 

3 Components of an Autonomous Mobile System 

An autonomous system must be capable of planning and executing a task 
according to a given aSSignment. When a plan is available, its execution can 
start. A complex sensor system must be activated which leads and supervises 
the travel of the vehicle. Furthermore, it is necessary to recognize and solve 
conflicts with the help of a knowledge processing module. The basic 
components of an autonomous intelligent robot are shown in Fig. 3. To 
conceive and build these components, expertise of many disciplines such as 
physics, electronics, computer SCience, mechanical engineering, etc. is 
required. It is very important to design good interfaces between the 
functional components of the system. 

The most difficult task is building the software. This is a universal problem 
with automation efforts involving computers. Designing software for 
autonomous vehicles is. however, complicated by the fact that very little is 
known about their basic concepts. An autonomous vehicle must have the 
following capabilities: 
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autonomous planning and preparation of actions according to a given 
task 
ihdependent execution and supervision of the actions 
understanding of the environment and interpretation of the results 
from sensor information 
independent reaction to unforeseen events 
passive and active learning capabilities 

Figure 4 shows the planning and control system of the autonomous vehicle. 
It consists of several hardware and software modules which are 
interconnected to a functional unit. 

The planner obtains information to assemble a product. In order to execute 
the assignment knowledge about the product is obtained from a CAD 
database. Furthermore, the robot has to know its environment, operating 
parameters and sensor hypotheses. This knowledge is obtained from a world 
model. The information about its work scenario must be current and 
dynamically updated by the sensor system. The planning is a very difficult 
and time consuming process and is done off-line with a powerful scientific 
computer. Since the planner needs live sensor data a link to the computers 
executing the plan must be provided. 

The execution of the plan is done by a distributed vehicle computer. There 
are several CPUs operating in parallel to expedite the processing of the 
work assignment. The vehicle computers interprete stepwise the 
instructions and execute them. In addition, expert knowledge is given to the 
vehicle computer to process sensor information and to solve conflicts which 
may arise during the navigation, docking or assembly. Since the size of the 
vehicle computer is restricted, it only can solve simple problems. In serious 
situations the main computer will be notified and it in tum tries to find a 
solution. It will also prepare and issue a situation report for the operator. 

The supervisor observes the operation of the vehicle and reports any 
problems. There are two types of disturbance which may occur, they are of 
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parametric and structured nature. Parametric problems stem from wrong 
sensor parameters. If properly recognized they can be corrected locally. 
Structured problems stem from unforeseen changes in the robot world 
where the location of parts may have changed. In this case the operation has 
to be replanned off-line by the planner. To perform its task, the supervisor 
constantly reads and evaluates sensor data. Since conclusions may have to be 
drawn from measurements of various sensors the evaluation of the sensor 
data may be very involved. 

The control module operates the feedback loops of the robot system, it 
compares the set paints with the controlled variables and tries to correct 
deviation. Any problems are reported back to the executive and planner and 
are used for corrective actions if necessary. 

In the further discussion of this paper only the sensor system will 
considered. 

4 The Sensor System 

A sensor system of the Karlsruhe autonomous mobile robot consists of 
various sensors which are interconnected by a hierarchical control concept. 
The sensors furnish the planning and supervision modules with information 
about the status of the robot world. For each of the three major tasks of the 
vehicle, the navigation, docking and assembly an own sensor system is 
provided. 

The sensoric has the following assignments: 

locating workpieces in storage 
supervising the vehicle navigation 
controlling the docking maneuver 
identifying the workpieces and their location and 
orientation on the assembly table 
supervising the assembly 
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inspecting the completed assembly 

For the navigation of the autonomous vehicle, a multisensor system is 
necessary. A distinction is made between vehicle based internal and external 
sensors and world based sensors. Internal sensors are incremental decoders 
in the drive wheels, a compass, inclinometer, etc. External sensors are TV 
cameras, range finders, approach and contact sensors, etc. World based 
sensor systems use sonic, infrared, laser or radiotelemetris principles. For 
the navigation various approches may be used: 

dead reckoning 
navigation under the direction of a compass 
the use of world .based sensor systems 
driving under the guidance of floor markers and vehicle based external 
sensors 
navigation by vehicle based external sensors, such as a camera or a laser 
range finder 
the use of a combination of navigation principles 

A vehicle driving in an obstacle free environment may use any of the first 
four principles. In case obstacles are entering or leaving the vehicle's path 
or when it is possible that the robot may veer off the course, vehicle based 
external sensors must be used. For example, the vehicle must constantly 
monitor the path with a camera system. Most advanced autonomous vehicles 
use a combination of several approaches systems to react to unforeseeable 
events. Recognition is done by extracting specific features from the picture 
of the scenario and comparing these with a sensor hypotheses obtained from 
a world model. For scenes with many and complex objects the support of an 
expert system is needed for the sensor evaluation. 

The docking maneuver will be supported by optical, magnetical or 
mechanical proximity sensors. Thereby, for coarse positioning a vision 
system may be used and for fine positioning mechanical feelers. 
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Recognition of parts for assembly will be done with a 2D vision system which 
also determines the position and orientation of the object. For the 
supervision of the assembly process a 3D vision system is required. 
Operations such as parts mating. fastening and aligning require 
force/torque. approach and touch sensors. The most important sensor is the 
vision system; it is connected with the other sensors to a multisensor 
module to supervise a complex operation such as an assembly. 

A multisensor system may be designed according to the following concepts: 

a combination of various types of sensors 
the use of the same type of sensors at various locations 
the use of one sensor for the acquisition of various parameters 
the use of one sensor for interpreting moving scenes 

The first two sensor principles are task dependent and must be carefully 
designed for the specific application. The last two sensor principles are 
difficult to implement. In all cases the capacity of the sensor channel and 
the picture evaluation algorithms must be carefully designed. ~or example. if 
a sonic sensor is used in conjunction with a laser scanner. the signals of 
both sensors have to be combined to one channel parameters. 

5 Sensor Data Processing 

In a complex work environment it usually is necessary to employ several 
sensors to understarid an event. The KAMRO system will employ the 
hierarchical sensor system architecture shown in Fig. 5 (2). There are 3 data 
processing levels in this schema. They are: 

Basic sensor data processing level 
Sensor data evaluation level 
StrategiC sensor planning level 
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On the sensor data processing level the raw sensor data is evaluated. The 
algorithms are basically of procedural nature and the knowledge is 
contained in a well structure form. As an example a vision system will have 
algorithms to determine the identity. location and orientation of a 
workpiece. The interaction with the robot on this level is in realtime. 
On the sensor data evaluation level for each sensor a matching of the 
preprocessed data with a sensor hypothesis is done. The hypotheses for the 
individual sensors are obtained from the world model where they are 
stored as logical sensor information. It may only be necessruy to supply to 
the matching unit a subset of the available sensor information. On the basis 
of the hypothesis and the measured data the matching is done. For this 
operation tolerances be provided. If information is missing or the 
tolerances are too great the system will reject the results and it may try a 
new matching operation. In case this attempt still does not rend or any 
result. the problem will be sent to the next higher level to reach at a 
desicion. 

On the strategic sensor planning level the fusion of sensor data from the 
lower levels takes place. A comprehensive evaluation of all sensor data is 
done with the aid of knowledge stored about each sensor. Thereafter. action 
instructions are given to the robot or a new sensor processing strategy is 
planned. A blackboard is employed as an information exchange mechanism 
between the knowledge bases of the individual sensors. It acts as a short 
term memory and uses the preprocessed sensor data of the matching units 
as input. This data is evaluated by independent knowledge processing units. 
The sequence of the knowledge processing is determined by a problem 
specific control strategy. 

The structure of the hierarchical sensor evaluation system is so complex 
that it must be supervised by an independent control and communication 
module. It is based on an object oriented control schema. The data exchange 
between the objects is done via messages. The various modules of the sensor 
evaluation system can be tied together for solving a specific problem. The 
data manipulation within the modules is done locally. Thus. changes in one 
component do not effect other modules. 
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6 Description of the Sensor Systems 

KAMRO has three independeht sensor systems, one for the navigation, one 
for docking and one for the assembly. The control of the sensor operation is 
done via the blackboard architecture described in the previous section. In 
general, the sensor systems operate independently. However, in some cases 
communication between the individual sensor systems is necessary. In the 
following sections the sensor systems are desCribed. 

6.1 The Sensorsfor Navigation 

The robot obtains from the planner a route map in which the path to be 
travelled is defined. In principle the navigation can be done with the help of 
resolvers located in the omnidirectional wheels. However, with this method 
travel can only be done in a deadreckoning mode and the vehicle would have 
to reorient itself constantly with the help of external markers to correct 
deviation from the defined path. 

KAMRO will be equipped with various sensors to help gUiding the vehicle 
along 'its path. There will be an interface to the world model to constantly 
update the position of the vehicle. The camera system used tries to 
understand the environment from sequences of images. In addition a laser 
triangulation sensor is employed to measure the exact distance of an object. 
For observing the close proximity of walls and other obstacles an array of 
sonic sensors is located in a belt fashion about the vehicle. Every wheel of 
the drive system is equipped with a resolver to control travel strategies of 
the vehicle. In the following the sensors are explained in more detail. 

1 111e camera system 
The camera system is being designed to interprete the path of the robot 
from sequences of images taken during the travel. There will be a total of 4 
cameras installed, they will be working together as two sets. Each set is 
capable of processing stereoscopic images of the robot world. An attempt 
will be made to determine the position of the robot in reference to known 
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objects. For this reason, it is necessary to communicate with the world 
model. 

For the teach-in phase the robot will be sent through the various routes it 
can take, thereby, features of objetcs marking the path will be extracted. 
The features are entered into the world map. During navigation the system 
is determining its location in reference to the tought features of the objects. 
It will be possible to cross-check the travelled path with information from 
the resolvers in the wheels. 

2 The triangulation laser sensor 
The laser sensor aids the camera system in case the exact distance of an 
object has to be known. The deflection of the laser beam is programmable. 
Thus, it is possible to direct the beam on a specific object and to scan its 
surface to obtain the topology. The laser scanner will also be used to 
supervise the assembly. Its prinCiple is described in section 6.3. 

3 Sonic distance sensors 
To avoid collision at close distances a belt of commercially available soniC 
sensors is installed along the outside walls of the vehicle. It is the task of 
these sensors to detect the proximity of walls, doorways and obstacles. The 
sensor information may have to be processed in conjunction with the 
pictures obtained from the cameras and laser system, entailing a sensor 
fusion. In case obstacles are encountered it is necessary to identify them and 
to plan a collision avoidance maneuver. For this reason there will be a 
communication link to a collision avoidance and error recovery module. 

4 The resolver for the drive wheels 
Since the vehicle has an omnidirectional drive system it must be possible to 
monitor the rotation of every wheel and to control their rotational speed 
and direction. The wheels are driven by brushless servomotors having three 
phase stator windings and an armature equipped with permanent magnets. 
A resolver is fastened to the motor to decode the rotation. The construction 
of the resolver is similar to that of a motor, Fig. 6. It has a rotor winding and 
two stator windings. The latter are located at an angular displacement of 
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900 to each other and pick up the rotating magnetic field of the armature. 
The sine and cosine functions generated by the two armature windings are 
used for determining the rotational angle. With the help of a special 
electronic module foreward and reverse signals are produced and sent with 
a frequency of 512 pulses per revolution to the drive motors. The control 
strategy for the 4 drive motors is determined by a special software module 
which communicates with the world model. 

6.2 The Sensorsfor Docking 

Various types of sensor principles may be employed to calibrate the docking 
position. E.g. a tactile sensor in the gripper of both robot arms can be used 
to detect with the help of a pin the known position of two holes in the 
worktable which are adequately (located by a camera) spaced apart. The 
angular position of the joint angles of the arms, together with the arm 
dimensions, are used to calculate the location and orientation of the mobile 
robot in reference to the work table. Beside this contact measuring 
principle there exist three non-contact techniques. Inductive sensors may 
be used to search and to register the edge of a thin metal sheet, or a 
capacitive sensor measures capacity changes if there is a transition between 
materials with different dielectric parameters. Finally, optical sensors are 
capable of measuring the exact position and orientation of the mobile robot 
relative to a work area (e.g. assembly desk). Both, active and passive 
techniques are used. The last kind of docking sensor is installed in the 
KAMRO. 

The active approach integrates several laser diodes (LEDs) which are 
arranged in an orthogonal fashion in reference to the assembly table. These 
diodes form an orthogonal coordinate system. A PSD - sensor is integrated 
into the gripper. In a first step this sensor is brought into an parallel 
position relative to the x, y - plane indicated by the three diodes. This can 
be performed by vertical gripper movements. In case the z-coordinate of the 
working surface is not known a fourth diod at a kown relative distance from 
the x y -plan can be employed to obtain this dimension. The z position of the 
tables can also be obtained with the wrist sensor of the effector. By this 
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method the effector is moved slowly towards the table and upon though the 
z coordinate is calculated from the joint angles and dimensiones of the arm. 

The passive approach uses the triangulation principle. A pulsed laser diode 
is integrated into the gripper and is used to scan several discrete pOints of 
the working area. An CCD-camera which is installed in the wrist (see next 
section) receives the position of the reflected laser beam. Thereafter, the 
distance of these scanned pOints is calculated. By this calculation the 
position and the orientation of the working area can be determined. This 
measuring methods can be improved if the scanned region is marked by a 
dedicated feature (e.g. a cross). In this case, the scanning region can be 
found very quickly. 

6.3 The Sensorsfor Assembly 

Various sensors are used for supervising the assembly. They are a 
multifunction laser scanner, two wrist cameras, a force/torque sensor, a 
touch sensor, a sensor for the gripping forces and an approach sensor. 

1 Multi-function laser scanner 
The measurement of exact distances is done by triangulation. Figure 7 
shows the block diagram of the system. This system is entirely computer­
driven (two M68020 processors). The two galvanometer mirrors can be 
rotated to generate any desired (e.g. tracking) field of view and scanning 
frequency (tracking). This capability of random scanning is important, e.g. 
for the detection of operational features of a workpiece (e.g. curvature, hole 
position). 

The position of the reflected beam is measured (difference of currents) by a 
two dimensional position sensitive diode (PSD). It is used to calculate the 
distance. A special feature of this sensor is that it also can measure the 
intensity of the reflected light of any point scanned (normalized addition of 
currents). This features will be used to merge information on distance and 
intensity without a correspondence problem. 
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An additional CCD-camera controls the global field of view of the laser 
scanner by locating regions of interest. When such a region has been 
pinpointed the laser scanner can be automatically turned into this direction 
by the robot to take measurements. The pictures taken with this camera are 
used to separate background objects and shadows. 

This combined laser scanner needs about lOsec for processing 2562 

scanning pOints (distance and intensity). However. the raw data have to be 
corrected mainly for background lights. PSD non linearity pincushion and 
parallel distortion. The last two types of distortions are generated by the 
transformation of the equidistant spherical scanning lines into non­
equidistant differences in cartesian coordinates. 

The essential objective of this sensor system is the automatic fusion of 
distance and intensity data. The fusion is done for various operators obtained 
from the feature extraction. For example. edges are easily detected from 
intensity images; whereas from distance measurements they are hardly 
detectable because the reflected laser beam is split by geometriC edges. 

The final classification of an object is done from distance. PSD-intensity and 
CCD camera intenSity data. Fig. 8 shows the steps to be taken to obtain 
corrected measurement data and to identify an image. In the following the 
steps are described in more details. 

step 1: Simultaneous generation of the distance and laser intenSity image 
by the PSD. Thereafter. extraction of the background shadows from 
the laser intensity image. 

step 2: Extraction of the object contours from the laser intensity image. 
These contours stem from geometric object features (physical 
edges) or changes of the reflectivity of the object. 

step 3: Extraction of the geometric contoures; resulting in a segmentation 
of the distance image. 
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step 4: Evaluation of surface features (e.g. curvatures) from the areas 
which were determined in step 3 (geometrical segmentation). 

step 5: Separation of the volumetric and reflective contours in the laser 
intensity image. 

step 6: Tracking of the shadow regions by the use of the laser beam and 
exposure of these marked regions to the CCD-camera. This camera 
has a field of view which is different from the scanning field of the 
laser scanner. Therefore. it is possible to separate objects which 
are not visible in the two laser images. 

step 7: Recognition of objects in the background which are concealed by 
front objects. The latter are only visible to the laser scanner. 

2 Two wrist cameras 
The global two dimensional view of the assembly is obtained by the camera 
which is fixed above the workstation. A three dimensional view of the 
workpieces to be mated and the details of three dimensional operational 
features of the parts (before and during the assembly) cannot be generated 
by the "overhead" camera. These tasks are performed by two small CCD­
cameras which are mounted to the wrists of the two KAMRO grippers. The 
operating range of these two cameras is about 10 cm to 50 cm without 

zooming. Within this range they can obtain accurate distance information 
and no laser scanner is needed. 

The tasks of these cameras are as following 

a) Recognition of the operational features of an object and determination 
of the objects position and orientation. The features extraction is 
performed with the help of 3-D CAD models. The geometric models 
are referenced automatically in several steps to evaluate the image 
obtained by the camera. 

The final evaluation of the object features is done by rules. These rules 
control the motion of one wrist camera ( e.g. top view. side view or 
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front view) in order to find the exact feature parameters. All rules are 
ins;t:alled in a so called visibility tree [3]. 

b) The designation of the hand to be used for the manipulation (left or 
right gripper) and the control of the work is done by a rule based 
module. 

For the control of the manipulation a measurement tree is used in 
analogy to the visibility tree mentioned above [4]. The tree defmes the 
kind of measurement to be performed by a camera for every elementary 
assembly operation (e.g. insert. tum). If one hand is selected to perform 
a joining operation then the camera of the other hand is used for the 
manipulation control. 

3 Force/torque sensor 
This type of sensor is needed to control handling of the object. to supervise 
assembly. and to protect the robot from overload. It is installed in the wrist 
of the effector and should be able to render accurate and repeatable results 
throughout the entire load range of the robot. The sensor itself has to be 
protected against possible overload. shock. and vibration. The basic 
principle of our sensor is shown in Fig. ·9. It is divided into two parts: a 
lower ring with four rigid supports and a upper ring with four fastenings 
pOints for the gripper. Careful attention must be paid to a good design so 
that the measurement signals are highly linear with the applied force. The 
analog strain gauge signals are converted to force and torque information via 
matrix multiplication. 

4 Touch sensor 
The dedicated type of a touch sensor to be used is shown in Fig. 10. [5] This 
sensor is integrated into the gripper finger. The sensor pad (30 mm in 
diameter) is formed from a silicone rubber sheet that is tensioned across a 
flat plexiglas surface by means of a retaining ring. Light that is directed onto 
the plaxiglas from small bulbs is totally reflected at the inside of the flat 
plexiglas surfaces. When the rubber is pressed into intimate contact with 
the plaxiglas. by the force exerted on the workpiece. total internal 
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reflection is prevented and the light then leaving the plexiglas is projected 
by a lens onto a CCD photodetector array (256 x 256). A video image of the 
tactile image is then available for processing and analysis using procedures 
of image analysis. 

If necessary the pad can be rotated via a drive mechanism to reposition the 
object held in the hand. 
5 Sensor for gripping forces 
This sensor monitors the gripping forces the fingers apply to the object to 
be handled. A conventional strain gauge measurening arrangement is used. 

6 Ultrasonic sensor 
This sensor is needed to monitor the approach of the gripper to the object. 
For economical reason it is necessary that the hand moves toward the object 
very quickly. and as soon as it is close to the object the motion has to be 
slowed down in order to avoid collision and to assure a save gripping 
position. Conventional ultrasonic sensors are used. To be able to measure 
close distances the control circuit provides a fast switching time between 
emission and reception of the signal. 
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Components of an autonomous robot 
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Abstract 

In this paper we discuss some fundamental issues related to the development of an 

artificial tactile sensing system intended for investigating robotic active touch. The analysis of 

some psychological and psychophysical aspects of human tactile perception, and a system 

design approach aimed at effectively integrating the motor and sensory functions of the robot 

system, suggested to conceptually organize tactile exploratory tasks into a hierarchical 

structure of sensory-motor acts. Our approach is to decompose complex tactile operations into 

elementary sensory-motor acts, that we call "TACTILE SUBROUTINES", each aimed at the 

extraction of a specific feature from the explored object. This approach simplifies robot 

control and allows a modular implementation of the system architecture: each function can be 

developed independently and new capabilities can easily be added to the system. All tactile 

exploratory procedures are selected and coordinated by a high-level controller, which also 

operates the integration of tactile data coming from sensors and from lower levels of the 

hierarchy. 

Some experimental results will be presented demonstrating the feasibility and usefulness of 

tactile sensing in exploratory operations. A recently developed sensor will be briefly 

presented, which exploits force/torque information measured directly at the tip of the robot 

end-effector. This sensor is able to detect, besides the position of the contact point, the normal 

and tangential components of the contact force. Methods for characterizing the surface of 

manipulated objects, according to their hardness, texture and friction properties will also be 

discussed. 
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1. Introduction 

Tactile perception is a fundamental capability for a robot that has to execute manipulative 

and explorative tasks. The interactive behavior of touch allows humans to extract several 

features from the external world, that cannot be detected by vision or other senses. Examples 

of such features are: hardness, elasticity, roughness, texture, temperature, thermal 

conductivity and local geometrical characteristics, such as holes, edges, cavities, sharp 

regions, etc. 

It is important to point out that extracting such features from an object is not Ii capability of 

a specific sensor, but it is rather a capability of the whole system. Performing explorative 

tasks involves the execution of sensory-motor procedures, in which tactile information is used 

to sense and drive the movements of the fingers. Touch is intrinsically active and involves 

dynamic sensing, where movements are utilized for augmenting and driving sensory 

information. The coordination of sensory activity and motor activity is not just a summation 

of capabilities, but it considerably improves robot performance, by increasing the perceptual 

skill of the system and extending the set of characteristics that can be extracted from the 

external world. 

In passive perception (mostly followed in vision), sensors and actuators are physically 

separated: sensors are fixed devices which statically observe the world and send information 

to a central controller at a very low sampling rate; once sensory data are analyzed, a motor 

action for the manipulator is planned. In this approach, data processing and motion planning 

are two distinct processes, which do not overlap in time. Motion planning is based on sensory 

information, but once the trajectory of the arm has been calculated it cannot be changed. 

In active perception, especially in tactile perception, sensing and control are 'tied together. 

Sensors are often mounted on actuators and are used by the system to probe the environment 

and precisely control the movements. Trajectories are computed in real time using sensor­

based control techniques. 

Assigning p~rceptual capabilities to exploratory acts rather than to static sensors is a novel 

concept in robotics, that has not received much attention among scientists so far, unless at the 

level of speculation. Recently, however, this issue has been considered more seriously, and 

some implementation has been attempted [1][2][3]. 

Our goal is to build an autonomous tactile robot system capable to perform active 

exploration and fine manipulation of real objects, for their recognition. 

Based on the analysis of some aspects of human tactile perception, our approach is to 

decompose complex tactile exploratory procedures into a sequence of elementary sensory­

motor acts, that we call "TACTILE SUBROUTINES", each aimed at the extraction of a 

specific object feature [4]. 
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In humans, it is possible to identify a number of typical tactile procedures that are 

performed with the fingers every time we want to detect some particular feature from an 

object. For example, if we are interested to know the hardness of a material, we repeatedly 

press our fingertip against the object surface, paying attention to the force we exert and to the 

object deformation. If we are interested in objeCt texture, we gently slide the fingertip along 

the object surface and we pay attention to the tactile sensation coming from our epidermal 

sensors. As another example, if we want to reconstruct the shape of an object, we follow the 

object contour, keeping in mind the trajectories of the contact points achieved by the 

fingertip. 

In this context, we define a "TACTILE SUBROUTINE" as a motor action executed on a 

sensor, guided by the tactile information coming from the sensor itself, according to a control 

strategy which depends on the sensor and on the feature that has to be extracted. 

This approach considerably simplifies robot control and allows a modular implementation 

of the system architecture: we can develop one tactile subroutine at a time and freeze it in the 

system as "innate behavior". To add capabilities to the robot we simply insert new subroutines 

in the system. All tactile subroutines are selected and coordinated by a high-level controller, 

which also operates data integration and directs the global exploratory strategy. 

2. System description 

The tactile system we developed for investigating tactile perception consists of the 

following components: 

a PUMA 560 robot arm, controlled by its dedicated microprocessor (UNIMA TE) and 

programmed in VAL II; 

a miniaturized force/torque (FIT) fingertip sensor, working as a sensitive probe for 

tactile exploratory tasks; 

a piezoelectric polymer (PVF2) sensor, implementing a sort of artificial finger nail, 

intended to rub rough surfaces for texture detection. 

Other components of the system are two PC's, utilized for sensor preprocessing, and a 

DEC micro VAX II, used as a system supervisor for tactile data integration and high level 

control. 

The complete architecture of the system is depicted in Figure 1. The fingertip FIT sensor is 

mounted on the PUMA wrist and the nail-sensor is attached to the fingertip. Each sensor is 
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connected to a PC. PCI is intended to process the information coming from the Frr sensor 

and to control the execution of tactile exploratory procedures; PC2 is dedicated to the nail 

ETHERNET 

pVAX II 
pVAX 
2000 

Fig 1. The system architecture. 

pVAX 
2000 

sensor and works as a slave in the communication with PC1. It continuously read the signal 

produced by the nail during the sliding movements and computes a number of Parameters 

useful to characterize roughness. The two PC's communicate via serial line. PCI is also 
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connected to the PUMA processor through a 16 bit input/output parallel port for managing 

sensor-based movements. 

An additional parallel interconnection exists between fingertip sensor and PUMA 

processor, which implements a sort of reflex pulse for stopping the PUMA in case of 

dangerous situations (overloads on the sensors) that could damage the system. 

2.1 The FIT sensor 

This sensor has been designed to be easily incorporated as a sensitive fingertip in an 

articulated robot hand, but in the system presented in this paper it is used as a tactile probe for 

exploratory tasks and it is mounted on a single rigid "finger". This finger is connected to the 

PUMA wrist through a compliant adaptor: in fact, a certain amount of flexibility is mandatory 

for controlling interaction forces between robot and environment. A schematic description of 

the sensor is shown in Figure 2. 

P C 

A AID 

Fig. 2. The fmgertip force/torque sensor with its conditioning units. 

The device has the purpose of measuring the three orthogonal components of the resultant 

force and the three orthogonal components of the resultant torque applied to its mechanical 

structure. The measurement principle is the mechano-electric transduction of the elastic strain 

of a monolithic cylinder beam to which the load is applied. The transduction is carried <:>u~t QY 

6 strain-gages only. 

The top of the cylindrical structure is threaded so that different types of fingertips can 
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easily be adapted to the sensor. When an external force is exerted on the fingertip, the 

mechanical structure of the sensor deflects, causing the strain-gage response. 

The electric resistance variation of each strain gage, due to the strains imposed to the 

cylinder by the load, is separately measured. This information can be processed in the form of 

six orthogonal components of the applied force/moment by solving the set of linear equations 

which model the elastic compliance of the structure; the equations can be obtained by using 

beam theory or by calibrating the cell experimentally. Conventional algorithms for linear 

system solution, e.g. Gaussian elimination, are adequate for this purpose. However, the 

peculiar arrangement of the strain gages on the cylindrical surface of the sensor allows a more 

time-efficient algorithm, almost decoupling the cell readings [5]. 

The small size of the sensor, the low cost, along with its simple structure, make it attracting 

for being integrated in the mechanical structure of robot hands or robot end-effectors for fine 

manipulation. 

Some performance figures experimentally obtained from a prototype sensor, using a non­

engineered technology, are listed in table 1. 

Table 1 

Active cell size: 

Force range: 

Torque range: 

Crosstalk (max): 

Precision (repeat.): 

lOx lOx 16mm3 

0.1 t030N 

0.1 to 30Ncm 

4%FSO 

2%FSO 

The thickness of the cylindrical beam is a free parameter which determines the loading 

range of the sensor. Temperature variations can be compensated by using an extra strain-gage, 

bonded to the stiff base of the sensor structure. 

Resistance variation of each strain-gage is measured by an individual Wheatstone bridge 

(module 0 in Fig. 2); the 6 output signals are then amplified (A), fIltered out by a low pass 

filter (-), multiplexed and finally converted into digital form (AID). The F{f sensor is 

connected to a PC through a Data Acquisition Card, which performs multiplexer addressing 

and analog to digital conversion. 

2.2 The PVF2 sensor 

A piezoelectric sensor, made by PVF2 polymer, is utilized as a dynamic sensor for 

implementing a sort of artificial fingertip nail, intended to rub rough surfaces for texture 
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detection [2]. The nail structure consists of a properly shaped plastic sheet, adapted to the 

upper surface of the fingertip, from which it protrudes for about 5 mm (Figure 3). 

NAI L 

Fig. 3. The PVF2 nail sensor with its conditioning units. 

This arrangement allows to add compliance to the sensor and to increase sensor sensitivity 

to mechanical vibrations. The PVF2 film (25 micron thick), used in a bilaminate 

configuration, is located between nail and fmgertip, bonded to the inner side of the nail. 

When the nail is slid along a rough surface, the nail structure vibrates, producing strain in 

the PVF2 sensor, which generates an amount of charge proportional to the strain. This charge 

is amplified by a charge amplifier and the output voltage signal is digitized by an NO 

converter and processed by another pc. 
The upper frequency limit of the digitized signal, established by the sampling rate of the 

system, is almost 5 KHz, and it proved to be sufficient for all practical surface explorations. 

As for all piezoelectric sensors, the lower frequency limit of the nail signal is not zero, but 

a few hundreds mHz. This is due to the finite time constant of the piezoelectric sensor, that 

derives from its finite internal resistance. In this particular case, such intrinsic limitation turns 

out to be a positive feature of the sensor: in fact, as a consequence of a non-zero lower 

frequency limit, the nail cannot respond to very slow mechanical deflections. Therefore the 

high frequency components of the signal due to the roughness of the explored surface are 

detected, while the low frequency "noise" caused by the variation of the contact force during 

the sliding movement is filtered out. 

An approach involving dynamic tactile sensing for texture detection using a PVF2 sensor 

has also been reported by Cutkosky [6]. 
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3. Functional architecture 

Based on the functions that the robot system is intended to implement, the software 

architecture has been organized in three control levels, as illustrated in Figure 4. 

Levell 

HIGH 
LEVEL 

MIDDLE 
LEVEL 

LOW 
LEVEL 

sy m bolic 
rep resentation 

SPU 

ROB 0 T 

high level 
commands 

TACTILE 
PLANNER 

MCU 

MOTOR 

Fig. 4. Hierarchical functional architecture of the system 

The lowest level of this hierarchy includes all VAL II programming and all assembler 

routines for sensor acquisition, processor communication and actuator driving. This level is 

designed to execute simple commands sent by" the middle-level controller. Such commands 
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may include position commands in joint space or in cartesian space, or force/torque 

commands. 

The Sensor Interface Module (SIM) realizes the interface between sensor and computer, 

providing analog to digital conversion and data acquisition. The Sensor Processing Unit 

(SPU) performs a fIrst stage of processing and provides the Motor Control Unit (MCU) with 

feedback signals for motor control. According to the middle-level commands and to the 

feedback signals, the MCU computes the proper output data, which are converted in analog 

voltages and then sent to the Driver Unit for driving the motors. VAL II programs are 

included in this module. 

Level 2 

The middle 1evel is the level in which elementary sensory-motor operations (tactile 

subroutines) are frozen in separated modules (SUBi) as behavior of the system. Each 

subroutine has the role of managing the execution of an exploratory procedure aimed at the 

extraction of an object feature. The exploratory strategy depends on the feature that has to be 

extracted and on the sensor used in the exploration. 

A dedicated Signal Analyzer Module (SAM), one for each subroutine, performs a 

compression of sensory data coming from the lower level, by computing some significant and 

synthetic parameters utilized as feedback signals for the middle-level controller. The same 

parameters are also combined in a next stage for computing a quantity representative for the 

feature extracted by the tactile subroutine. All outputs produced at this level are sent to the 

high level for further processing. 

Level 3 

The purpose of the high level in this architecture is to plan an exploratory strategy 

according to the input task and to attempt a recognition or a classification of the objects 

explored by the robot system. All data and parameters computed by the middle level converge 

in a module, called Integrator, whose task is to merge all sparse sensory data into few 

synthetic quantities compatible with the information stored in the Data Base. 

The real recognition process is performed by the Recognizor module, which compares the 

parameters extracted by the Integrator with sample parameters stored in the Data Base. This 

sanlple parameters are extracted from a number of sample objects in a previous learning 

phase, carried out by using the same procedure. 

In this way, the system learns how to build its own model of the world, since only 

internally processed information is utilized to construct and update the Data Base. In this way, 

systematic errors and imperfect calibration do not affect the system performace significantly, 
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and the recognition process comes out more robust. 

The Tactile Planner selects the next tactile subroutine for optimizing the recognition 

process, according to the input task and to the local features recognized during tactile 

exploration (given as feedback infonnation in the high-level controller). 

4. Experimental results 

Three tactile subroutines have been implemented on this system, HARDNESS, 1EXTURE 

and FRICTION, aimed at the extraction of hardness, texture and friction coefficients 

respectively. 

In all experiments the objects were ftxed on the table, located in a position known a priori 

by the robo~, since no vision system was used to identify absolute positions in the robot work­

space. All tactile subroutines were coordinated by PCl. 

4.1 Hardness procedure 

Starting from an initial conftguration, the arm moves slowly toward the object, in order to 

press the object surface with the sensor tip. When the contact force detected by the Fff sensor 

exceeds a given threshold, say F1, the PUMA stops its motion and sends the coordinates of its 

wrist to PCl. After the transmition is completed, the PUMA slowly increases the contact 

force on the object (as allowed by the compliance of the wrist adaptor) and when the force on 

the Fff sensor reaches a second threshold F2, the PUMA stops again and sends the new wrist 

location to PCl. 

Based on the information received from the PUMA and on the elastic properties of the 

compliant wrist adaptor, PC1 determines the position displacement D of the Fff sensor during 

the pushing procedur~ and computes the following ratio: 

F2 - FI 
H=------

D 

In the case of soft materials, the displacemet D caused by object deformation will be 

relatively large, while for hard objects D will result much smaller. Thus, the parameter H 

represents a rough estimate of object hardness. 

Figure 5 shows the results obtained by executing the procedure on several sample objects, 

having the same shape (parallelepipedal), the same thickness (10 mm), and modulus of 

elasticity comprised between 105 and 109 Pa. 
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Fig. 5. Statistical evaluation of the H parameter, 

executing the procedure on five sample objects. 

CPa) 

Repeatibility was also tested by running the procedure several times on each object: the 

standard deviation computed over 20 tests on the same object did not exceed the value of 4% 

F.S.O. 

4.2 Texture procedure 

This tactile subroutine was executed by rubbing the PVF2 nail sensor (located at the tip of 

the F{I' sensor) on the object surface with a predetermined force. Since fine texture details are 

better perceived by exploring planar surfaces, we used flat objects only. Moreover, in order to 

symplify signal processing and easily describe roughness by few sinthetic parameters, we 

decided to test the system by using "wrinkly patterns", prepared by disposing in parallel thin 

wires on a smooth board. We used spacing between wires and diameter of the wires as 

parameters for characterizing roughness. Wrinkly patterns have also been used by 

psychologists to test the human tactile system [7][8]; therefore they also represent a good 

method for comparing the human perceptual system with an artificial one. 

The procedure has been caried out by rubbing the nail sensor on the wrinkly patterns along 

a straight line, for a length of 35 cm, at the speed of 125 mm/s. The force exerted on the 

surface was set at 3 N and controlled by PC1, while the nail signal was sampled by PC2 at the 

frequency of 3.2 KHz. The aim of the experiments was to test the ability of the system in 

discriminating spacing and thickness of the wrinkles. 
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Signal processing following the exploration of each pattern included a fIltering phase, a 

thresholding phase and an evaluation phase, where two parameters were computed on the 

signal: the distance d between spikes and the amplitude A of the spikes. In particular, if n is 

the number of samples acquired between two spikes, v is the velocity of the exploration and f 

the sampling frequency, spacing is given by: d = nv/f. 
Results of these experiments are reported in Figure 6: Figure 6a shows the parameter d vs. 

the real spacing of the wrinkles, while Figure 6b shows the parameter A vs. wrinkle thickness. 

a 

b 

1---·--"·'---''''--''--''·'---'·---~4·'""0---5·0'---''· d (mm) 
10 15 20 25 30 

~~~~~ .. ~ .. ~-~~~--~----~. A (mm) 
0.2 0.5 0.8 1.2 1.5 

Fig. 6. Statistical evaluation the Texture Procedure. 

Fig. 6a: parameter A related to wrinkle amplitude 

Fig. 6b: parameter d realted to wrinkle spacing. 

The system exhibited a precision of about 0.2 mm in perceiving distancies, but its tactile 

acuity (i.e. the smallest distance at which the system is able to discriminate two wrinkles as 

distinct) resulted of 0.5 mm. This greater value can be explained by considering that a spike 

produced by a wrinkle fades out in about 3-4 ms, depending on the elasticity of the nail, and 

at the speed of 125 mm/s the nail advances of about 0.5 mm. 

The standard deviation calculated for the parameter A was much greater than the standard 

deviation calculated for d. The main factor affecting the value of A is the mechanical 

vibration of the robot arm during the exploratory procedure. However, the system was able to 

discriminate five wrinkles (0.2, 0.5, 0.8, 1.2 and 1.5 mm thick) with an error smaller than 

15%, and four wrinkles (0.2, 0.6, 1, 1.5 mm thick) with an error smaller than 2%. 

4.3 Friction procedure 

This procedure involves automatically testing the friction properties of an object, in order 

to estimate its static and dynamic friction coefficients. This information is very u!refuI for 

programming operations like grasping or manipulation of objects, which often rely on the 
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forces the friction is able to withstand; beyond that, it can be used in order to characterize 

different objects, contributing to their recognition. 

The way the friction coefficient is estimated is inspired by the observation of human 

behavior: we usually proceed by touching the object with a finger, pressing on it moderately 

and then exerting on the finger a force tending to slide it over the object surface; this force is 

increased until the fingertip actually slips, after which the operation is over. 

To replicate such an operation, an automatic system needs the capability of sensing both 

the normal and tangential forces exerted at the contact point. This feature, which is not 

possessed by most conventional tactile sensors, is realized by the so-called Intrinsic Tactile 

(IT) sensor, as described by Bicchi and Dario [5]. An IT sensor consists basically of a 

force/torque sensor integrated within the fingertip surface, so that all the components of the 

force system generated by contact pressures are measured. If the geometrical description of 

the fingertip surface is known, it is possible to apply simple algorithms (as the original one 

proposed by Salisbury [9], or a more precise one described in Bicchi [10]) so as to obtain the 

following information: 

a) the location of the contact point on the fingertip surface; 

b) the intensity and direction of the contact force, and hence 

c) the values of the normal and tangential (friction) components of the contact force. 

U sing the miniaturized FIT sensor mounted on the Puma arm and a spherical fmgertip of 

radius 10 mm, fixed in turn to the FIT sensor, we performed several experiments aimed at 

automatically measuring the coefficients of static (Ils) and dynamic (Jld) friction of different 

objects in contact with the fmgertip. The fingertip was initially brought to touch the object 

surface with a normal force of about 0.5 Kg; then the robot arm started to force it to move in 

the tangential direction, increasing this force linearly with time. The values of normal and 

tangential components of contact force, detected by the IT sensor during this phase and the 

following slippage, were stored in a buffer memory. Once arm motion is stopped, data are 

elaborated and presented in graphic form as shown in fig.7. 

The diagram showed in fig.7 refers to an experiment with a rubber object (with relatively high 

friction), and presents the plot of friction ratio Rf (Le. the ratio between the tangential and the 

normal component of contact force) vs. time. Each small square in the plot corresponds to a 

value of Rf measured at a sampling rate of 10 Hz. In the diagram of fig.7 two parts can be 

easily recognized: in the first part Rf increases almost linearly, until a maximum is reached, 

after which the friction ratio drops to a lower value; in the second part Rf is approximately 

constant. The interpretation of such plots is straightforward: the friction force increases until 

Rrreaches the static friction limit Ils, then motion (slip) starts, and, according to the Coulomb 

model of friction, the friction ratio drops to Ild. 

Due to the fact that accidental perturbations of the mechanical system and of the sensor 

measurements superimpose random oscillations to the experimental curves, their 
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Fig. ? Friction ratio during a sliding movement 

interpretation in terms of quantitative estimates of ms and md is not obvious. Repeated 

experiments on the same objects resulted in data having a common pattern, but several local 

discrepancies. An algorithm for interpreting such data that resulted in fairly repeatable 

estimates is the following: the set of measurements is splitted in two parts corresponding to a 

tentative slippage instant Ts; the first subset of data is fitted with the best line in least-squares 

sense, and the second subset is aproximated with a constant value equal to its average value. 

The sum of the averaged squared errors in each data subset is assumed as a measure of 

approximation; at varying T s, the slippage instant is found as the one minimizing the 

approximation error. 

The resulting linear approximation is presented in Fig.? with a superimposed solid line. 

The maximum value of friction ratio reached before slippage is assumed as the static friction 

coefficient; the average value of the following phase is the exstimated dynamic friction 

coefficient. 

Based on the above technique, an automatic sorting of objects, having different friction 

characteristics, has been attempted. Objects belonging to three classes, with low, intermediate 

and high friction, were examined in random order by the system and the friction of their 

surfaces measured with the above described methods. The objects were then recognized as 

belonging to one out of the three classes: the incidence of errors in these tests was virtually 

null. 
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5. Conclusions 

A sensorized robot system able to perform specific exploratory procedures (tactile 

subroutines) on objects in order to extract information useful for their description, has been 

described. 

The approach we have proposed is an attempt of replicating in an artificial system some of 

the sensory-motor paradigms used by humans in exploratory tasks. Obviously, many 

simplifications were introduced to reduce the complexity of control and the amount of 

computation on the sensor signals. 

In spite of the limitations of the present work and the rather simple structure of the system, 

results show the validity of this approach. Studying one finger exploratory strategies based on 

the decomposition of complex human tactile perceptual activities in a sequence of elementary 

sensory-motor acts, seems to be promising and to encourage further investigation in the field. 
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This paper deals with sensing uncertainty in a robot world. Sensors typically 

provide signals that are both incomplete and ambiguous. Three pieces of research are 

described which attempt effective solutions to this common problem but using three 

different approaches. The first piece of work uses vision to demonstrate the construction 

and integration of a dynamic world model for mobile robot navigation. The second, 

provides an adaptive rule-based controller for an inverted pendulum and cart problem and 

the third, sensory integration of vision and taction for the purposes object recognition. 

The theme for the first piece of work is that the most effective solutions are obtained 

when maximising the amount of representational data available. The theme of the second 

is that broad qualitative partitioning of a state-space can avoid problems of ambiguity and 

noise without performance decrement. Indeed, the use of broad qualitative partitions is 

shown to lead to the development of heuristic adaptive controllers for complex dynamic 

systems that offer far greater than flexibility than those based on classical methodologies. 

The final theme is that machine learning can play a powerful role in the generation of 

sensor-based models. 
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INTRODUCTION 

Uncertainty exists in numerous fonns in present robot systems because robots must 

operate in the real world. In order to operate in this world, robots must cope with the 

inherent uncertainty that is associated with the modelling, planning and motion of 

manipulators and parts. A review of the literature shows that two schools of thought exist 

regarding the solution to reducing uncertainty. Although both are knowledge-based, it is 

difficult to imagine how the first could reduce the effects of uncertainty since it requires 

structuring the robot world more than at present, and enough rigidity is already imposed 

on current robotic systems. This method also advocates the building of stiff, precise 

robots [3,4], further structuring. In highly structured systems it is the accumulative 

effect of small errors caused by, kinematic, kinetics and sensor data that makes such 

systems fail continuously. 

The second method proposes robots incorporating learning and reasoning through 

the use of sensory integration [1]. It is the route to reducing uncertainty that is reported on 

here. Through applying knowledge-based methods to data acquired from various sensors, 

robust sensory integration techniques were developed that improve robot system flexibility , 

generality and reliability [9]. Throughout the paper, numerous exampleS are given of the 

types of uncertainties commonly associated with robot sensors. Generally, these either 

take the form of uncertainty factors associated with data collection, e.g. noise, or, 

through poor data interpretation by humans. 

Brady [2] defmed robotics as the intelligent connection o/perception to action. As 

such, the control process requires three fundamental elements: 

• perception 

• action 

• intelligence 

Perception, is defined here as integrated sensing. All sensors provide data which 

is incomplete or ambiguous. To solve this fundamental problem we have two options. 

First, to try to make perfect sensors. Second, to make effective use of several sensors so 

allowing individual sensors to complement each other in a graceful and integrated fashion. 

The usual vehicle for such integration is referred to as a world model. Action is simply 

referred to as any mechanical operation in the world. Intelligence, in the context of this 
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paper, is viewed as a process involving the learning of the relationship between perception 

and action. 

A brief overview is given of three pieces of work related to the theme of sensing for 

intelligent control. The first shows how sensory data collected from different geometries 

can be merged into a simple world model in the domain of mobile robotics. The second, 

how integrated qualitative sensing provides control in a dynamic domain. Initially, the 

classic control problem of the inverted pendulum was chosen to demonstrate the principle 

and conduct experiments on a purpose built test-rig. Later, the theorems developed were 

applied to a satellite control problem to test their robustness. In each instance sensory data 

was used to induce control rules. The third shows how rule induction is useful for 

integrating different sensing modalities, and for classifying objects. 

WORLD MODELLING FOR MOBILE ROBOTS 

Because they operate in technically complex environments mobile robots are 

considered to be a perfect platform for developing knowledge-based methods for sensory 

integration and researching into uncertainty. These robots are now entering a new phase 

of development that will see them become free-roving, be able to avOid obstacles and 

dock. No longer will they be constrained to their present wire-guided, pre-defined routes 

[6]. Although we are only in the initial stages of mobile robot development, it is 

recognised that the complexity of their technology must equal the complexity of the 

environment in which they operate. 

Sensory integration alone is not well understood, therefore it is a barrier to 

progress. Integration requires consistent and repeatable algorithms that deal with 

uncertainty, technically these are difficult to develop. The AI community considers this as 

a major research area of interest because it has prior experience of uncertainty generation 

and representation. The data that requires interpretation is obtained from sensing sources 

that are becoming increasingly more complex leading to computational overheads. 

Although vision remains the major sensing medium at present, free-roving robots might 

require data to be integrated into a world model from numerous sensors, e.g. taction, 

inertial navigation systems, laser ring gyros or acoustic rangefinders. Presently these 

sensors suffer from a combination of uncertainty factors such as noise, poor resoluton, 

reflection problems and enormous computational needs. However, continued advances in 
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Figure 1 A black and white photograph of a teapot 
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all the areas highlighted should see successfully planned, collision-free navigation for 

mobiles, and robot systems in general. 

Sensory integration must address the problems of incorporating data into a dynamic 

world model. This means handling data obtained from different sensors, mUltiple data 

from a single sensor or, in the case of compliant tactile sensors, time-varying data from a 

single sensor [5]. In this paper an attempt is made to reduce sensor uncertainty through 

using a common data structure as a repository for sensory data. Finally, knowledge­

based methods are used to control the data integration, and provide reliable and consistent 

information. 

Two major paradigms predominate the approaches taken to early and intermediate 

computer vision. In early computer vision, the major paradigm consists of describing the 

world in terms of explicit edge tokens, these descriptions were then used as a basis for 

, computing useful intrinsic information. For intermediate computer vision, the major 

paradigm is based around the idea of the 2.5D sketch which describes local surface 

orientations and discontinuities relative to the viewer using a rich symbolic language. 

This then represents a crude world model. Unfortunately, these approaches have been 

fraught with problems. First, the current generation of edge detectors still provide hesitant 

tokens which suffer from dis torsion, omission and false labeling whilst empirical results 

suggest that edge detection is an ill-posed problem per se. 

As an indication of the uncertainty surrounding edge detection consider the results 

obtained from a recently conducted experiment [8]. The experiment consisted of providing 

twenty emminent vision practitioners with a photograph of a teapot, Figure 1, an acetate 

sheet and a pen, they were then asked to identify the edges. Figure 2, shows the line 

drawings of the nine replies received. Obviously, there is a considerable degree of 

uncertainty with regard to what constitutes edges. Second, and as a consequence, 

intrinsic image computation based on edges has provided only frail solutions using natural 

image data. These essentially negative conclusions have been bolstered by the discovery 

that useful intrinsic image representations may be generated without prior recourse to edge 

tokens. 

TOspace, see Figure 3, is a single 3D iconic data-structure into which may be 

merged data from surfaces rather than edges. This data may be either visual or tactile in 

origin. The data-structure has been used to provide navigation information for a mobile 
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robot on the basis of stereo computation from visual images. Absolute information 

concerning the robots position was integrated into the world model and used to update the 

known co-ordinates of location and heading. 

The model is little more than a computationally convenient repository for range 

information. The choice of description language (transparency or opacity) follows from 

the observation that this is what should result from any shape-from-X or tactile sensation. 

The choice of a 3D data-structure is useful on two accounts. First, it allows easy 

geometrical transformations whenever we require a solution which does not project to a 

point at a sensor. For example, when running through a forest or playing tennis we 

perform many actions that need to be interpreted within a dynamic coordinate frame. In 

tennis we may perceive the ball from one position but require a different projection to make 

the information useful, i.e. at the position of the racquet. Second, issues such as 

occlusion become non-issues in that occlusion only exists for viewer centered descriptions. 

The advantages of a 3D iconic data structure are that it is neither viewer centered, nor is it 

object centered. It simply attempts a literal model of the surfaces present in the world, and 

may be used directly as a basis for navigation, collision avoidance or, following 

invocation, recognition itself. 

MACHINE LEARNED CONTROL OF DYNAMIC SYSTEMS 

Conventional approaches to the control of dynamic systems, such as robot arms, 

involves the modelling of the system dynamics followed by the use of the resulting inverse 

kinematics for control. Such methods clearly have problems whenever it is difficult to 

model the dynamics of the system. 

One early attempt to provide effective control without knowledge of the system 

dynamics was performed by Michie and Chambers [7] in which a machine learning 

algorithm called BOXES was used to balance a simulated inverted pendulum. The only 

objective of the system was to avoid failure, which was reported when the angle of the 

pole exceeded a certain angle or the cart displacement reached either end of a finite length 

track. The experiment consisted of applying this control strategy in an attempt to keep the 

system from failing as long as possible. Learning occurs after each failure when the 

learning algorithm alters the control strategy, then experimentation is continued until the 

pole can be successfully balanced for an indefinite period. 
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The control strategy described is used to control an inverted pendulum and cart, a 

complex dynamic system, albeit a dynamic system which can be effectively controlled 

using classical means, e.g. a proportional plus derivative controller. So, in an attempt to 

increase the complexity of this particular dynamic system bang-bang control was used, and 

the learning algorithm was supplied with limited sensory data, the pole angle only. The 

analytical solution of the problem shows that four state variables: the cart position; the cart 

velocity; the pole angle and the pole velocity describe the state of the inverted pendulum 

and cart at any instant. 

The state space is filled with four dimensional boxes, one dimension each for the 

four variables described above. In each box the variables fully describe one state and, 

based on the information contained within a given box that state decides whether the cart 

should be pushed left or right. If the pole is balanced successfully then the controller has 

become expert in balancing the pole, in that part of the state space only. However, in 

another part of the state space, one in which the controller has no experience, any attempt 

to balance the pole could meet with sudden failure. Thus, control strategies for many 

experiments are required in order to learn how to balance the pole, this experimental 

knowledge-base is then used to construct a generalised controller for the complete state 

space. 

When the generalised controller was constructed, the box structure could be 

simplified to the point where human readable rules can be extracted, Figure 4, these 

control rules were of the form: 

if the angular velocity of the pole is less than a given threshold then push left 

else if the angular velocity of the pole is greater than a given threshold then push right 

else if the angle of the pole is less than a given threshold then push left 

else if the angle of the pole is greater than a given threshold then push right 

if the velocity of the cart is less than a given threshold then push right 

else if the velocity is greater than a given threshold then push left 

else if the position of the cart is less than a given threshold then push right 

else if the position of the cart is greater than a given threshold then push left 

The rule above, derived by Sammut [12] from simulation, is similar to the Makarovic [11] 

rule, which was derived from examination of the equations of motion. The major 
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difference between these two separate approaches was that whereas Sammut's rule was 

derived from knowledge of the system it was controlling, Makarovic learned only from 

examining the response of the system to a limited set of actions. 

In the original work by Michie and Chambers [7], the algorithm worked by fIrst 

partitioning the four dimensional problem space into a fmite state space consisting of 255 

states. Each state offered an, initially, random control solution (push left or push right), 

whose value was modified by a simple credit assignment algorithm. It is this initial 

partitioning exercise that is one of the domains being worked on in a new phase of this 

work. It is percived that automatic partitioning, rather than human partitioning, might 

lead to more effective and effIcient learning, paricularly in the start-up phase. Automatic 

partitioning also becomes a necessity where uncertainty factors arise after learning is 

completed. For example, if a sudden change occurred in the system dynamics, e.g. a 

part falling off a satellite, giving a resulting change in inertia, it would be necessary for the 

controller to retrain itself. It is also useful for handling noisy signals or for cases where a 

state continually lands on a boundary. 

This simple BOXES algorithm offered an effective control strategy which has been 

extended by recent work at the Turing Institute. After first replicating the original work an 

apparatus was constructed of the type shown in a diagrammatic form in Figure 5. This 

has been used to show how signals produced from a single sensor, an imposed uncertainty 

condition, can help to partition the state space and lead to effective control under 

dynamically unstable conditions. Using a rule-based control algorithm developed by 

Makarovic [11], that is in fact a derivation of BOXES, The pendulum balanced for 31 

seconds. More recently however a rule-based algorithm developed at the Turing Institute 

has balanced the pendulum for 90 seconds. 

Having successfully demonstrated the effectiveness of rule-based algorithms as an 

adaptive controller, the next phase of the project is the implementation of BOXES to other 

machine learned control domains. Further, it has been shown that the machine learned 

model for control has broad generalisibility. For example, Sammut [12] has shown that 

the rule base may be used directly for the control of a satellite. Here, the goal was to 

control the attitude of a robotised satellite in low Earth orbit, a satellite that has an on-board 

manufacturing capability operating in micro-gravity. Internal and external maintenance is 

undertaken by a robot arm. Working within these constraints, and in addition having to 

cope with the problem of remote sensing, the satellite had to function effectively with 



www.manaraa.com

52 

Figure 6 Satellite simulator controlled by BOXES rule-base 



www.manaraa.com

53 

Ethernet + modems 

CRS·4000 

I_~~~~!J-i..~~~ • .t~.~ Framcstore + monitors 

lJ~~i~ Mains po".r 
ilchbox 

.,roy llIdlle ~.nsor 

pneumatic gripper 
+ local en ors 

Figure 7 The Freddy 3 advanced robotics research testbed 



www.manaraa.com

54 

minimum human intervention. When presented with a 'black box' simulation of this 

par:ticular space craft an adaptive controller was developed, one based on AI methods 

described previously, which proved to be more robust than systems being developed from 

traditional control theory. The results showed that not only did the controller keep the 

satellite in its desired orbit, but it did so using the minimum amount of fuel, Figure 6. 

RULE BASED INTEGRATION OF VISION AND TACTION 

There are two ways in which taction and vision may be integrated. First, in a 

coarse-to-fine procedure where vision is used to provide coarse information for hand/eye 

control which is then refined by tactile signals during object manipulation. Second, in the 

use of both vision and taction directly for the task of object recognition. The work 

described here shows how rule-induction can be used for this latter task. 

The experiments were conducted using the Freddy 3 advanced robotics research 

test-bed, Figure 7, which features both multiple vision systems as well as a Lord LTS-300 

array tactile sensor, Grant et al [5]. This may be considered as a force camera in that it 

produces data which is iconically mapped to the world. 

This may be casually described as a "footprint", from which we can recover shape 

attributes of an object which may form a basis for classification. Basically, the operation 

of the LTS-300 is as follows, when an object is placed on the skin of the sensor, the 

conductive coating on the underside makes contact with the sensing sites. These sites, an 

80 x 80 array, are etched onto a printed circuit board, recorded data readings are 

proportional to the applied load. The vision system also provides shape attributes. The 

role of sensory integration is to make effective and economic use a minimal subset of 

attributes (vision or taction) in which combined sensory data provides a classification 

solution which is simpler and more accurate that using just a single sensor. 

Separate areas of uncertainty were observed throughout the integration experiment. 

The most serious were the uncertainties inherent in the tactile sensor sensor itself, the 

product of poor specification and design. Not only did the sensor generate noise during its 

calibration experiments, Figure 8, it also gave hysteresis and creep curves that could be 

problematic in classification applications. Fortunately, all the work was undertaken in an 

environment that allowed the development of knowledge-based filters and tools to achieve 
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a ... original image. 
b ... image after streak removal and 

median filter has been applied. 
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Complexity Performance 

attributes nodes number number percentage 
calculated in tree correct wrong correct 

Vision 4 15 9 11 45 

Taction 5 15 11 9 55 

Both 
2 7 20 0 100 

together 

Figure 9 Summary of sensory integration experiment 

successful object classification. Mowforth et al [10] demonstrated results for a simple 

classification exercise, results describing both the complexity of the task as well as 

performance accuracy are shown in Figure 9. 
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This article presents a robotic vision knowledge system based on some current sensor and 
machine intelligence methodologies, quite a large portion of which has recently been developed 
by the PAMI Group at the University of Waterloo. 

In this system, there are two major sources of image input: grey tone images from CCD 
cameras, and range data images from synchronized laser scanner or from structured lighting 
scheme coupled with CCD cameras. The grey tone images are used for model generation and 
object recognition, location and tracking. The range data are used for surface profile measure­
ment, gauging, and recognition. From range profile and discontinuity, edges can be detected 
and regions can be grouped into hyperpatches or enclosed surfaces of distinct geometry. Special 
techniques are used to relate the local profile information point features which form the object 
reference. In 3-D shape synthesis using grey tone images, a system integrating a fast feature ex­
tractor with a domain knowledge guided local feature filtering and geometric reasoning scheme is 
used. Synthesized shapes are then represented in the form of 3-D random graphs and attributed 
hypergraphs which can be translated into procedural knowledge in the form of rule network for 
real time object recognition and location using hypothesis refinement search strategies. 

A research prototype of the vision knowledge system is currently under development for a 
multi-agent intelligent robotic workcell and for a project related to the Mobile Servicing System 
on Space Station. Preliminary experimentations already yield encouraging results. 

1 Introduction 

The general goal of computer vision is to construct, from images of physical objects, explicit and 
meaningful descriptions which can be processed and inferred by computers for various purposes. 
The way visual information is extracted by an imaging system and transformed into quantitative 
and symbolic representations crucially affects the effectiveness of a vision system. We assess this 
effectiveness by judging the performance of the three major phases of the system: 1) the 3-D 
measurement of an object; 2) the transformation of the measured data into a representation of 
the object and 3) the use of the representation for object recognition and location as well as 3-D 
scene interpretation. Hence, the major issues concerning many researchers in robot vision today 
are: 1) the effective acquisition of visual information from objects and scenes; 2) the recovery 
of two- and three-dimensional information from the acquired images; 3) the representation of 

the geometrical and spatial information in a suitable quantitative and/or symbolic form for 
inferences. 

Because of the variable nature and complexity of the real world, the major problems encoun­
tered in a vision system are: 1) intensive computation and 2) susceptibility to various sources 
of noise. It is computation intensive partly because of the huge amount of data to be processed 
in a sizable image and partly because of the levels of data transformation required to compress 
data into a coherent interpretable form. Due to the sensitivity of various analytical techniques, 
often the analytical results highly depend on the technique used or the parameters set. J~ence 
to maintain acceptable consistencies and reliability in the final interpretation of the results by a 
computer vision system is a difficult and usually frustrating task. Though considerable efforts 
have been devoted to filtering or eliminating noise at various processing levels, the results are 
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still not encouraging. One of the observations is that most of the current systems are devised to 
transform information from lower levels to higher levels and at each level of the transformation, 
noise could be introduced. But, often in a vision task, what mostly needed are certain visual 
and geometric information and constraints of the objects and the scenes. Hence, one feasible 
and realistic approach to computer vision is to use high level knowledge or highly redundant 
joint events obtained from visual and/or spatial aspects of the scene to tolerate or to bypass the 
effects of the low level noise. hI this article, we present a maclUne intelligence and knowledge 
based approach to real world and real time 3-D vision for robotics applications based upon this 
philosophy. The system is largely evolved from current sensor and machine intelligence method­
ologies, quite a large portion of which has been recently developed by the PAM! Group at the 
University of Waterloo. 

ill this article, we first give an overview of a computer vision system and a brief survey 
of recent research activities in three-dimensional vision. Next we describe the robotic vision 
knowledge system developed at Waterloo. Finally, we present and discuss the results of some of 
the industrial and space applications. 

2 Computer Vision: An Overview 

Figure 1 gives a schematic of the basic processes and their relations in computer vision. Blocks 
linked by solid arrows represent processes generally adopted in existing systems. Those linked 
by dotted arrows describe activities related to some new trends and developments. 

After the preprocessing phase, the image is usually transformed into a parametric form iJ:l. 
terms of specific local feature codes or binary codes representing the foreground aiJ.d background 
of the image [39]. Features may range from edges, streaks, to any local features such as corners 
and bright spots. ill 3-dimensional range images, range, edges, surface oriE'ntation and curvature 
could be obtained through the use of smoothing and interpolation techniques [62]. 

The extracted features or grey level values obtained for different locations can be used to 
segment the image into regions or other coherent components such as borders, ribbons, curves, 
blobs, etc. This process is goal-oriented. ill a more complex scene analysis, it may be necessary 
to separate different types of regions-regions with certain grey level or color, or regions with 
homogeneous texture content. In addition to segmenting a region based on its local features, 
tracking or reinforcing curves or borders of regions are generally included in the region seg­
mentation and description process. An important phase in furnishing a region with low order 
structured information is texture analysis. Th.e texture information can be used to segment 
regions [35]. Through the use of special classification and clustering techniques, the texture 
content of the regions can be represented and classified [46]. 

Once distinct regions are segmented, described, and labeled (or parameterized), the next 
phase is to represent the geometry of shape and the structural (or textured) content of distinct 
regions by special mathematical models for quantitative analysis, classification and comparison 
[61]. Though various mathematical and geometric models have been proposed today, their 
applicability is generally task dependent and justified largely by experimental results .. 

At the higher level of scene representation and analysis, relational structures are used. ill 
this representation, both the shape and content (or attribute values) of each component as well 
as the type of relationship between components, will be included. Mathematical or algorithmic 
models have been developed for comparing and infe~ring relationships [62,2]. 

Robot 3-D vision requires shorter image processing and analysis durations. The 3-D scenes, 
in general, are more complex in a factory environment. To follow a comprehensive process of data 
transformation and analysis at various levels is often beyond the task requirement. Anew trend 
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Figure 1: A Schematic of Computer Vision Activities 

is to bypass some of the intermediate processes (dotted arrows on the right side of Figure 1). 
This is made possible if specific knowledge about the objects are used to tolerate preprocessing 
or early processing noise. To cope with the complex representation of the real world, automated 
shape synthesis and knowledge acquisition for object representation, recognition and location 
have been developed [61,19]. 
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3 Three-Dimensional Vision Systems 

A comprehensive survey on 3-D object recognition can be found in [8,7,27,16,42]. In general, the 
three major phases of a 3-D vision system following roughly the schematic in Figure 1 are 1) 3-D 
measurement of an object; 2) the transformation of the measured data into a representation of 
the object; and 3) the use of the representation for object recognition and interpretation. 

3 .• 1 Extraction of Spatial and Geometric Information 

To extract spatial and geometric information from physical objects, two major approaches have 
been adopted, namely stereo vision and structured lighting. 

1. Stereo Vision 

For stereo vision, 3-D geometric information can be constructed by matching the stereo­
scopic image pairs, aided by techniques of correlation and the resolution of the occluded 
parts [1], [48]. Algorithms have been developed for finding a matching between two point 
or plane patterns given in m-dimensional Euclidean space [52] and for matching subsets 
of poi~ts (also known as constellations) between a pair of stereoscopic unages [63]. 

2. Structured Lighting 

Industry has embraced structured lighting schemes since the environment can be controlled 
to ensure acceptable machine vision activity [30,42]. These artificial light features provide 
additional information and constraints to assist in the matching process(es) [24]. 

Shading variation or textured patterns are also used to constrain the surface orientation for 
scene interpretation [26], [55]. A related system that illuminates the scene with a regular 
pattern of light, e.g. a grid, and to derive surface orientation from the deformation of the 
grid is reported in [54]. To derive geometric information from texture and shade patterns 
requires sophisticated algorithms. When the size of the object varies or when the surface 
becomes fairly complex, changes in the resolution of the grating patterns and sophisticated 
edge detection techniques have to be introduced. Hence, most of these methods are used 
for scene interpretation. In general, they lack the accuracy and robustness required by the 
industrial tasks. 

Laser scanning [62] is another structural light method. Several commercial products that 
utilize laser scanning to obtain a depth map or depth hnage are now available. A synchro­
nized structured lighting scheme in the form of stripes has recently been developed in the 
PAMI Laboratory at the University of Waterloo. It has the same capability as the laser 
scanning method. From the range data, spatial location and the 2!-D and 3-D information 
of the object can be derived. The depth image contains the encoded spatial location and 
distance information [60,58]. 

3 .. 2 Object Representation 

An object representation scheme is generally examined under two criteria [23]: 
1. descriptive adequacy, i.e. the ability of a representational formalism to capture the essen­

tial visual properties of objects and the relationship among objects in the visu8.l world; 
and 

2. procedural adequacy, i.e. the representation scheme's ability to support efficient processes 
of recognition and search. 
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Literature review of object representation schemes can be found in papers such as [7,37]. 
They include: 1) generalized cone or sweep representation [44,47]; 2) multiple 2-D projection 
representation [53]; 3) characteristic-views technique [14,48J; 4) skeleton representation [20,50J; 
5) generalized blob representation [31J; 6) spherical harmonic representation [43]; 7) overlapping 
sphere representation [32J; 8) wire-frame representation [7,37J; 9) constructive solid geometry 
(CSG) representation [7,37J; 10) spatial-occupancy representation which include: a) voxel rep­
resentation, b) octree representation [29J, c) tetrahedral cell decomposition representation [7], 
d) hyperpatch representation [13J; 11) surface boundary representation [7J; 12) attributed graph 
and hypergraph representation [62J. 

Another approach uses directly the procedural knowledge organized in a form of rule network 
for object recognition and location from a perspective image of the scene [38]. It uses a hypothesis 
refinement strategy to direct the search. This approach has been demonstrated to be fast and 
reliable and well suited to domains where the nwnber, type and basic geometric characteristics 
of the objects are known. It has the distinct advantage of requiring only one camera (one image). 

4 Vision Knowledge System Configuration 

4.1 An Overview 

Figure 2 gives an overview of our configuration of the robotic vision knowledge system. 

The system uses two major sources of image input: grey tone images from the CCD cameras 
and direct close-up range data images from the synchronized laser scanner (or structured lighting 
scheme coupled with CCD cameras). The grey tone images are used for model generation as 
well as for object recognition, location and tracking. The range data are used for surface profile 
measurement, gauging, and recognition. 

To extract three dimensional information from range data, vectors normal to the surface at 
different points are computed; edges are detected and regions or enclosed surfaces of distinct 
geometry are grouped into hyperpatches [61J. The procedures include: 1) extracting profile and 
edges; 2) analysis and merging data to form hyperedges (or faces); 3) constructing an AHR of the 
scene; 4) performing a database search for subset of potential candidate AHR's; 5) conducting 
AH morphism operations (including AHR synthesis whenever necessary) for object recognition. 

For fast object recognition, location and tracking, the grey tone images are more appropriate. 
Special local features are extracted for 3-D shape synthesis to form an AHR or a 3-D random 
graph [60]. The knowledge acquisition can also be directed by "experts" through their interpre­
tation of the object and scene or by the use of 3-D dimension information from CAD data. This 
process can be coupled with an autonomous rule generation procedure under development. 

The point features of an object can be fused with surface profile information, when the 
same CCD camera is used to acquire range information on the surfaces of an object. A special 
procedure has been developed which relates the surface to a local reference derived from the 
position information of a subset of well-defined conspicuous points. The combined information 
can be organized and integrated into an AHR. Once the declarative knowledge of 3-D objects 
or scenes are represented in various forms of AGR and/or AHR, the representations can serve 
as models. They will be integrated into the vision knowledge system for fast retrieval and 
compression in the object recognition and location phase. 

For recognition and location of objects using CCD cameras, the knowledge-directed search 
methods based on hypothesis refinement are used. The method provides reliable and efficient 
scene interpretation by means of incremental refinement of the 3-D scene interpretation. Any 
domain knowledge that could be exploited will be input to the rule network to reduce the context 
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Figure 2: The Conceptual Configuration of the Vision Knowledge System 

and to impose more specific constraints. The constraints provided by the scene interpretation 
guide the selection of key features used to establish object position accuracy. The vision system 
has been applied to robotic assembly tasks, scene interpretation for robot vehicle and visual 
inspection. 

In case of conducting guaging or measurement on a 3-D surface profile, first the local reference 
of the objects of the scene relative to the camera or laser scanner has to be established. Then 
the local references obtained from the 3-D objects can be correlated with those stored in the 
knowledge base. Once the coordinate correlation has been established, direct comparison of 
corresponding points obtained from the range data with those in the model enables the system 
to measure the deviation of the observed surface from the model surface. Direct measurements 
of the surface relative to the local reference points of the object can also be conducted in the 
similar manner. 

With the basic image analysis techniques and knowledge representation built into the system, 
on-line inferences for profile measurement and guaging, object shape synthesis and model gener­
ation, object recognition, location and tracking as well as scene interpretation can be achieved. 
Once the position information in the Euclidean space is acquired and inferred from the vision 
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knowledge system, trajectory planning can be conducted to compute trajectories in the configu­
ration space for various joints of the manipulator such that the entire posture of the manipulator 
can avoid collision with itself and any nearby objects while accomplishing an assigned manip­
ulation or inspection task. In this section we shall describe some research activities leading to 
the development of such a system. 

5 Knowledge Representation and Inference for Vision Systems 

A representation oflmowledge is a combination of data structures and interpretative procedures 
(i.e. inference) which when taken t.ogether will lead to l,no1l'/('dgerrblc hehavionr [41. Tradit.ional 
AI thinking has divided knowledge representations into two major classes: declarative and pro­
cedural. Since almost no representation scheme is entirely one or the other, arguments about the 
relative value of one representation over the other are now of the past. But, the categorization 
does provide us with a way of grouping various representation schemes. The declarative repre­
sentations encode knowledge as a collection of related facts. Procedural knowledge is embodied 
in the inference mechanisms which operate on these sets of facts. One group of declarative 
representations that will be looked at in detail is that which uses a certain type of graphs to 
capture the structural information in a domain. The emphasis of the declarative representation 
is the provision of a framework to store structural information in a most general, natural and 
comprehensive fashion. In principle, we wish the representation to be invariant. To utilize spe­
cific domain knowledge for effective inference, a certain form of procedural knowledge can be 
derived directly or indirectly from the objects or from their declarative knowledge. 

5.1 Declarative Knowledge of Structural Representation: Graphs 

In this section we shall focus on the knowledge representation of structural or relational models. 
The types of structural descriptions to be considered are: 1) semantic networks [4]; 2) graphs 
[9] including attributed graphs [56,2]' hypergraphs [5,60], random graphs [33,64,57]. 

5.1.1 An Early Form: The Semantic Network Representation 

The semantic network representation was originally proposed by Quillian [34] and Shapiro [45]. 
A semantic net represents information as a set of nodes interconnected by labeled arcs that 
represent relationships among the nodes. All semantic networks share the following features: 
1) a data structure of nodes which represent concepts (generally in the form of a hierarchy of 
nodes connected by the ISA relationship) and other property links; and 2) specialized inferential 
procedures which operate on the nodes with the inheritance of information from the top levels 
of the hierarchy to the level of ISA links. 

While semantic networks have been a successfully used knowledge representation in different 
application domains, some critical issues [12) still remain. For instance, how could information 
about classes be distinguished from information about instances of classes, or how could excep­
tion be handled. It has been found that various proposed uniform default-style representations 
still have serious flaws. 

5.1.2 A More Basic Form: Attributed Graph and Hypergraph Representations 

A graph can be seen as a more generalized form of the semantic network. A graph G is defined 
to be an ordered pair (V(G), E(G)) consisting of: 1) a nonempty set of vertices V(G); 2) a set 
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of edges E(G) which is disjoint from V(G) and 3) an incidence function I)iG which associates 
with each edge in E(G), an unordered pair of vertices from V(G) [9]. This type of structural 
description can be used to encode the low-level information about objects such as points, lines 
(edges), curves, and surfaces. It can also be used to encode relationships between parts of 
objects and between the objects themselves, for example: adjacency, intersection, union, and 
containment. 

To furnish more specific graph structures for structural pattern representation and for ef­
fective inference, attributed graph representation (AGR), attributed hypergraph representation 
(AHR) and random graphs (RG) are introduced [61,56,64,57]. The mechanism for inference 
on graph representations is based on the retrieval, matching, recognition and transformation 
of graph and subgraph patterns. Usually, graph morphism algorithms are used for comparing 
graphs. A gmph morphism between two graphs is defined as a one-to-one mapping from the 
vertex set of one graph onto that of the other, preserving their edge-to-vertex incidence rela­
tions. Such mappings can be defined to accommodate various constraints and optimality criteria 
according to the need and the nature of the problem. 

An attributed gmph is a graph Ga = (Va, Aa) where Va = til, tl2, ••• , tin is a set of attributed 
vertices and Aa = ... , apq, ... is a set of attributed edges. The edge apq connects vertices tip and 
tlq with attributed relation. 

To represent 3-D objects or model, elementary area attributed and primitive block attributed 
graphs are introduced. An elementary area attributed gmph G. = (V., A.) is an attributed graph 
for representing a face or hyperpatch bounded by distinct and well-defined edges, where 1 )V. is 
a set of attributed vertices representing the boundary segments of the face and 2) A. is the set 
of attributed edges representing the geometric relation between the segments. For example an 
angle of intersecting edge segments can be the relation between them. A primitive block of an' 
object is a block bounded by surfaces such that there is no concave angular relation between any 
pair of the surfaces in the block. Hence a pyranlid, a wedge, a cylindrical block can be a primitive 
block of an object. Then, a primitive block attributed gmph is an attributed graph Gp = (Vp, Ap) 
which represent a primitive block of an object. The attributed vertex set Vp represents the faces 
and the attributed edge set Ap represents the the geometric relations between faces. 

In order to enable primitive or elementary features of an object to be grouped and organized 
in a hierarchical yet flexible manner, hypergraph representations are introduced into structural 
pattern recognition. A hypergraph [5,61] is defined to be an ordered pair H = (X, E) where 
X = Xl, X2, ••• , Xn is a set of vertices and E = e1, e2, ••• , em a set of hyperedges such that: 1 ) 
ei = <p(i = 1, ... ,n); 2) Uei = X where X consists of a set of attributed vertices Xo and a 
set of hyperedges Eo. Each vertices is associated with an elementary area attributed graph 
representing a face (or hyperpatch), and each hyperedge is associated with a primitive block 
attributed graph representing a priInitive block. 

The AHR of a 3-D object can be constructed either manually using a CAD system or through 
a hypergraph synthesis process from the attributed hypergraphs derived from the range data of 
different views 3. When constructing the AHR for 3-D objects or their images, we can proceed 
in three stages: 1) construction of the elementary area attributed graph for each surface or 
hyperpatch; 2) construction of the primitive block attributed block attributed graph for each 
component block and 3) construction of the AHR for object(s) or hnage(s) by considering each 
surface as a vertex and each set of vertices associated with a primitive block as a hyperedge, the 
primitive block attributed graph being the attributed value of the hyperedge. 

Using primitive blocks such as polyhedra or blocks with complete or partial cylindrical, 
conical or planar surfaces, we can construct complicated objects. In our system, each primitive 
block corresponds to a primitive block graph. The vertices, representing the faces of the primitive 
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block, then form a hyperedge ei. Here the complete AHR of an object model is given in Figure 3. 

OBJECT 

FACE ON THE 
OBJECT 

BASE 

ELEMENTARY 
AREA GRAPH 

CYLINDER 

HYPERGRAPH 

Figure 3: Attributed hypergraph representation of an object model. 

For the recognition and description of objects in images with range data, a special form 
of AHR, known as Edge Feature Hypergraph Representation (EHR), the vertices of which are 
made up of edges or curves or line segments (observed or derived), is introduced [56]. For the 
derivation of 3-D information from objects and location of 3-D objects from 2-D images, another 
form of AHR, known as Point Feature Hypergraph Representation (PHR), the vertices of which 
consist of point features, has also been introduced. The PHR can take into consideration of the 
key point features as attributed vertices (real or projected features such as intersecting point 

between edges) and their 3-D spatial relationships as attributed edges. These feature points can 
serve as local references where surface profile information acquired from other structured lighting 
schemes or laser scanners can be integrated into the representation. The PHR can be directly 
represented by a parametric 2-D image in which the point features are treated as vertices, and 
distances or edge properties between points become the relation attribute values. Such a PHR 
is called an implicit image graph. The advantage of such representation is that it can be directly 
obtained from the parametric image without an additional symbolic representation construction 
process. 
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5.2 Graph Morphisms as an Inference Mechanism for Comparing Struc­
tures 

Graph morphism can be described as the recognition that a graph, or one of its subgraphs, is 
embedded in another graph. These graphs will be designated as G = (X, U) and H = (Y, V) 
where G is called the domain of the morphism and H is called the range. Formally, a morphism, 
or mapping, of G onto H is denoted as a pair of mappings: f = (a, (3) where a is a vertex 
morphism and 13 is an edge morphism. Therefore, f : G -+ H is equivalent to a: X -+ Y and 13 : 
U -+ V. There are several kinds of morphisms including graph isomorphism [17,18,25], subgraph 
isomorphism or monomorphism [15,51,2,22,21] and the largest common subgraph isomorphism 
[59]. 

Graph isomorphism is the mapping f = (a, f3J is an isomorphism of G = (X, U) onto 
H = (Y, V) if and only if for all i and i' in X and eii' in U there exists j and l' in Y and ejj' in 
V such that a(i') = l' and f3( eii') = ejj' [6,10,17,18,25,36,41,49]. 

A largest COlDmon subgraph isomorphism [59] is a one-to-one mapping between the subgraphs 
of two generally non-isomorphic graphs such that the largest number of incidence relations are 
preserved between them. More formally, let G = (X, U) and H = (Y, V) and Ga = (Xa, Ua) ~ G 
and Ha = (Va, Va) ~ H.A mapping fa = (aa,f3a) is the largest common subgraph isomorphism 
of G onto H if and only if for all i and i' in Xa and eii' in Ua there exists j and l' in Ya and 
ejj' in Va such that aa(i) = j and aa(i') = l' and f3a( eii') = ejj' where the number of eii' is a 
maximtilll over all such mappings. 

A hypergraph monomorphism [61] is based on maximal incidence preserving vertex matching 
between hyperedges of the two hypergraphs. The maximal hyperedge matching is actually a 
matching of the optimal graph monomorphism type [65] applied on a small portion of the graph 
represented by hyperedges. Instead of aiming at searching the entire sets of elements, it attempts 
to find component-component correspondence or subgraph isomorphism for both of the entire 
graphs. The hypergraph monomorphism provides a natural means to reduce the number of 
comparisons. For an object hypergraph Ho(Xo, Eo) and a model hypergraph Hm(Xm, Em}, 
there exists a monomorphism of Ho onto Hm if the following necessary conditions are satisfied: 

1. each Vi in Ho is matched or partially matched by some vertices Vj' in Hm in such a way 
that the elementary attributed graph G Ui is monomorphic to GUj ; 

2. each hyperedge in Ho and Hm is associated with a primitive block graph and for Gei 

associated with ej in Ho, there is a monomorphism of G ei onto a primitive block graph 
G ek, associated with ek' in Hm. 

Figure 4 gives an example of 3-D object recognition based on attributed hypergraph monomor" 
phism. 

Finding the isomorphism between a graph and a sub graph of another graph belongs to the 
class of NP-complete problems. For the case of attributed graph, the average complexity can be 
greatly reduced if the contextual information and the structural relation between AGR's could be 
exploited. The specificity of the attributes and the attributed relations usually reduces the search 
space if vertex ordering [17], pruning [18] and branch-bound heuristics are appropriately applied. 
However the average complexity is still a function of the sixes of the graph. In a situation when 
there are many identical attributed vertices in an object, the vertex ordering method can do little 
for reducing the time complexity. One of the reasons of introducing the attributed hypergraph 
representation and monomorphism is to organize the graph into appropriate components such 
that part of the morphism finding process can be restricted to the comparison of sub graphs 
depicted by hyperedges. 
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Figure 4: A 3-D Object Recognition Experiment 

5.3 Objects and Scene Representation Based on AGR and AHR 

In Section 3.2 various schemes developed earlier which attempt to represent 3-D objects in a 
form suitable for manipulation and recognition have been mentioned. The most common ones 
are boundary representations, constructive solid geometry representations, sweep representa­
tions and decomposition representations. Most of these schemes are feasible for acquiring the 
geometric information from the object image, yet they lack the flexibility for effective recogni­
tion if the orientation of the object varies, or certain parts of the object are occluded, or when 

the class of prototypes is large. Furthermore, in most of these schemes, the knowledge of the 
prototype object has to be input by the users. 

In our system, we adopt attributed graph and hypergraph representations of 3-D objects 
(AGR and AHR) [61,56]. This data structure renders a very general representation of objects 
or scenes with high complexity. It provides a means to group components or parts of an object 
according to the relation that induces the hyperedges. Thus, the same object can be described in 
different ways depending on how the hyperedges are formed without affecting the basic primitive 
and primitive relations. This representation satisfies the requirement of the descriptive adequacy. 
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With respect to the shape synthesis of 3-D objects and models, we have developed a 3-D 
object recognition and synthesis algorithm which is capable of constructing an AHR based on 
the information extracted from an image with range data [61). Another method for representing 
3-D surfaces [11) is to use a label relaxation technique to estimate a topographic sketch consisting 
of surface patches segmented according to categories defined by differential geometry operators 
such as the gaussian and mean curvatures. The method is global (does not require the use of a 
local operator for classification), robust to noise and easy to implement. Once the segmentation 
is done, recognition procedures such as graph morphism techniques are applied. 

The purpose of introducing the AHR is to reduce the cost of finding monomorphisms during 
the recognition phase and to guide the graph synthesis process. The complexity of finding the 
monomorphism between graphs largely depends on the number of vertices and arcs in these 
graphs. The use of AHR results in the reduction of the number of vertices and arcs, and hence 
the computational cost of finding monomorphisms. It also enables the recognition of the spatial 
configuration of objects in 2-D images using knowledge-directed search. Once a view of an object 
in an image is represented by an AHR, an attributed hypergraph monomorphism algorithm can 
be applied to compare the AHR with those AHR's of different prototypes. 

5.4 Pattern Recognition of 3-D Objects Based on Graph Morphism 

For real-time robot control and on-line decision making, the efficiency of matching between two 
sets of elements or graph structures becomes significant. An efficient hypergraph monomor­
phism algorithm [61) is used for such purposes. The object recognition procedure based on such 
algorithms can be described as follows: 

1. Construct all the elementary area attributed graphs for distinct surface regions of the 
candidate object image. 

2. Construct all the primitive block attributed graphs for the blocks of the candidate object 
image. 

3. Construct the object hypergraph Ho. 

4. Initiate the search list to include all models screened out from the database through special 
feature matching. 

5. Search models Hm's in the list and find the hypergraph monomorphisms from Ho to Hm's. 
Delete the models from the search list if no monomorphism is found. 

6. If only one model is found then the object is recognized. 

7. If monomorphisms from Ho are found for more than one Hm's, obtain the hypergraph 
from the image of another view of the object and synthesize it with the previous Ho (the 
hypergraph synthesis method is provided in Section 5.5). 

5.5 Hypergraph Synthesis 

From the image of each view of an object, we obtain an AHR which represents the geometric 
structure of only those edges and faces of that object visible from the vantage point of the laser 
scanner. We call that hypergraph an Image View Hypergraph (IVH) of the object. To gather 
more information, several images obtained from different views of a 3-D object should be used. 
We have developed a method by which AHR's obtained from different views can be combined 
(synthesized) to form a single AHR that yields an AHR of the entire object. 
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Figure 5: Hypergraph synthesis experiment. 
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We introduce the hypergraph synthesis for the following two purposes: 

;t. To combine two IVH's of a candidate object image in the object recognition process. 

When an IVH of a candidate object is monomorphic to two or more model hypergraphs in 
the database, another IVH should be obtained for further recognition in order to resolve the 
ambiguity. We then synthesize the two IVH's into one which contains all the information 
obtained about the object from both views. The comparison of the AHR synthesized from 
the IVH's with model AHR's in the database may yield a unique monomorphism. 

2. To build a model AHR for a new object in the learning phase. 

The model AHR's in the knowledge base could be constructed from direct physical mea­
surements or through learning using information derived from images of different views. 
Thus, several IVH's of the new model can be derived and synthesized into a model AHR. 

The hypergraph synthesis procedure can be briefly described as below. 
For two hypergraphs HI(XI, Ed and H2(X2 , E2 ), the synthesis process is organized in two 

stages to obtain the synthesized hypergraph Hr(X., Er). First, two sets of hyperedges are 
considered. Let ep E EI and eq E E 2 • If ep and eq correspond to an identical primitive block 
of the object, then the primitive block graph synthesis can be applied to them. For each 
hyperedge in HI the comparison is performed to search for its counterpart in H 2 • If found the 
synthesis procedure is applied to that hyperedge and its counterpart and transfer the synthesized 
hY1)eredge into the set of hyperedges Er in the resulting hypergraph Hr. For hyperedges with 
no counterpart, they can be direl"tly t.ransfl"rrerl into Er in the synt.hesizl"d hypl"r!!;raph hy a 
union operation. Next the sets of vertices are to be considered (note that each vertex is an 
elementary area attributed graph). By comparing the attributes and the orientation reference 
of the vertices, we can determine if a vertex in Xl and a vertex in X 2 are corresponding to 
the same face of the object. Then the elementary area graph synthesis procedure is performed 
on those vertices, and as a result the synthesized vertex can be transferred into the resulted 
hypergraph Hr. Finally a new adjacency matrix for the resulted hypergraph is constructed. 
Figure 5 demonstrates a hypergraph synthesis experiment given in [61]. 

5.6 Procedural Knowledge for Scene Interpretation 

The representation of 3-D objects and scenes by attributed graphs and hypergraphs satisfies the 
criteria of descriptive adequacy. It is an appropriate declarative knowledge representation for a 
computer vision system. However, to use this fonn of knowledge for object recognition and scene 
interpretation, one has first to represent the scene into an AHR and then find the morphisms 
between the scene AHR and the model AHR. And, every time when an AHR is derived from an 
image, it has to be matched with the entire AHR of the candidate model. Hence, this form of 
knowledge representation may not be the most effective form of recognizing and locating objects 
in real time. If procedural knowledge can be derived directly from the physical objects or from 
the model AHR's of objects, they can be used to guide the search and inference process in a 
more focusing and direct manner. In this section, we present a robot vision system which uses 
a special form of procedural knowledge. 

The term procedural implies that this representation is chiefly concerned with encoding the 
knowledge of how to do some actions or to execute certain procedure. It captures information 
which is not very easily described as a set of facts. It then provides a control mechanism for 
more effective search and inference. Control tasks for a vision system could include: 

L recognition - coordination of information and inference sources 
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2. planning - organization of system behaviour 

3. calculations - organization of information needed to calculate object orientation, location 
and range 

There is an increasing need to use procedural knowledge in the robot vision system. Emerg­
ing interest in vision guided robotics and autonomous robot vehicles requires effective analysis 
of complex scenes within the limitations imposed only by the natural constraints of the environ­
ment. Attempts to provide effective vision must deal with missing or extraneous features due 
to glare or shadow, partial or total occlusion by other objects or the robot arm itself, and the 
fundamental ambiguity resulting from projection of the original 3-D scene onto a 2-D image. 
Many of the traditional approaches to machine vision perform poorly under such conditions and 
will generally fail if the image representation is too impoverished (too few visible object features) 
or if features are concealed by noise. 

The solution to providing effective vision is to adopt a problem oriented approach in which 
specific domain knowledge is used extensively for scene interpretation such that the use of 
the knowledge of the spatial relationship and the topology of the model and image features is 
exploited. The key to the success of such an approach depends on the ability of a vision system 
to: 

1. have the various types of knowledge represented effectively, and 

2. integrate the different knowledge representation schemes together such that the use of the 
various types of knowledge is effectuated. 

In the vision knowledge system, we integrate the declarative knowledge with the procedu­
ral knowledge. Based on the spatial and geometric relation and visual features, AHR's are 
constructed and used as the basic data structure to represent declarative knowledge. A rule 
network is employed to represent procedural knowledge for shape synthesis, feature extraction, 
object recognition and scene interpretation. The scene interpretation process is a step by step 
hypothesis refinement process represented as a path through a subset of nodes in the network. 
The refinement of a new hypothesis is dependent on the declarative and procedural knowledge 
associated with the rule node of the search path. The entire process from image acquisition to 
hypothesis refinement is guided by the rule network and is referred to as knowledge-directed 
search. 

5.7 Model Generation 

Due to the flexibility of the AGR and AHR in representing 3-D objects, a shape synthesis process 
has been developed. In both the object recognition and the knowledge acquisition processes, 
often several images obtained from different views ofa 3-D object are used. By this process, 
AGR's or AHR's obtained form different views can be combined (synthesized) to form a single 
AGR or AHR that yields a graph representation of the entire object. 

Using the graph or hypergraph synthesis process, a unique model graph can be obtained for 
an object. This approach is superior to the alternative approaches which require, for a simple 
object, several representations corresponding to its various views. As a result, it is difficult for 
them to determine whether or not the representation is complete. 

The AHR based on the structural decomposition view of an object would furnish a systematic 
and comprehensive way of representing objects and models. However, this representation may 
not render an economical way for determining graph morphisms or for providing a natural 
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guide for the construction of the object recognition rule network. To reduce the complexity 
of the graph morphism problem, appropriate decomposition of AHR's is desirable. Since in 
each of the comparison processes only one characteristic view of the object features will be 
involved, disregard whether the comparison method is based on knowledge-directed search or 
on hypergraph morphism; it would be possible to introduce a new set of hyperedges which will 
be induced based on various "optimal" characteristic views. We call these subsets of attributed 
vertices characteristic view hyperedges. Thus, the model generated can be represented by two 
concurrent sets of hyperedges, one based on structural decomposition and the other based on 
characteristic decomposition. The intersection of these two hyperedges will yield another set of 
hyperedges, each of which is of even smaller size. Hence, the complexity of the graph morphism 
problems will be further reduced. The characteristic hyperedges of an object can provide another 
piece of domain knowledge in the aut.onomous construction of t.he rule network for the knowledge 
directed search. 

5.8 Hypothesis Refinement and Knowledge-directed Search 

Image analysis or interpretation may be viewed as a search of scene interpret.ation hypotheses 
which can be expressed as the possible location and orientation of modelled objects wit.hin the 
3-D scene. Hypothesis refinement attempt to reduce the search space by conducting all search 
within the context implied by the current scene interpretation. The search context defines the 
natural constraints on object position relative to one or more surfaces in the 3-D environment. 

Scene interpretation consists of two processing stages given below. 

1. Establish the initial scene interpretation and camera viewpoints 

The position of each camera relative to the coordinate system of the scene interpretation 
is established through object recognition under unconstraint viewing conditions or may be 
obtained through a priori knowledge of the camera position relative to the support surface. 

2. Refine scene interpretation with known camera viewpoint 

(a) Select (i) a support surface of the current scene interpretation; (ii) an object model 
and (iii) an appropriate support condition for the given task to limit the orientation 
of the object relative to the support surface. 

(b) For an object model feature, select corresponding image features by filtering accord­
ing to the visibility characteristics defined by the camera viewpoint and support 
conditions. 

(c) For each model-image feature correspondence calculate the resulting constraints on 
object position. Repeat until object position is completely constrained. 

(d) Test each object position hypothesis by predicting the location of image features and 
testing for a valid match within the position tolerance of the corresponding model 
feature. 

(e) Update the scene interpretation and obtain the new support surfaces provided by the 
identified models. 

The success of an analysis depends to a large extent on the ability to efficiently filter features 
in the image. Filter capability is determined by the nature of the model and the level of constraint 
provided by the support conditions. 
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Calculation of object position is dependent on the quality of the image features and the 
nature of the constraints of support conditions. The available constraints simplify calculation 
of object position and permit the use of feature with very limited information content (for 
example, under restricted support conditions, a single edge feature can completely constrain 
object position). 

The procedure for testing a model hypothesis accommodates for the measurement accuracy 
of each feature of the object model and can directly access image data to bypass errors in low 
level feature detection. The object model also defines the conditions necessary for creating new 
support surfaces. 

The process of exhaustively searching all model position hypotheses under all possible sup­
port conditions is maintained through the use of a control network. Each stage of the analysis is 
guided by the search context which defines the current scene interpretation and assumed search 
constraints. 

Figure 6 illustrates how the support condition of an object could impose possible constraints 
of model features. Figure 7 demonstrates how such constraints can be used to define a filter 
which is able to extract the desired features under the hypothesized view point of the camera 
and t,he support conditions of the objects. 
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Figure 6: Use of support conditions to select image features. 

The process of refining an interpretation hypothesis can generally be described by an ordered 
sequence of well-defined steps or stages. In actual practice, processing is more complex. Input 
to the systems may consist of multiple images or viewpoints, and additional workspaces may be 
defined with multiple object models and refinement strategies. An analysis of the broad range 
of possibilities is managed through a knowledge-directed search. The search is directed by the 
knowledge or context of the task or enviromnent. This is similar in spirit to the "knowledge­
directed image analysis" of Ballard, Brown and Feldman [3] in which image understanding was 
directed by a search query from the perSOll using the system. The knowledge-directed search is 
guided by a rule network consisting of a network of rule nodes. Each step by step refinement 
process, or refinement strategy, is represented as a path through a set of nodes in the network. 
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Figure 7: Selection of candidate image features. 

At each step of the refinement strategy, new interpretation hypotheses are produced. Such 
hypotheses determine the constraints on the object position and specify an assmne(\ correspon­
dence between model and image features. The refinement of a new hypothesis is dependent on 
(i) the search rules (or processes) and domain knowledge associated with the rule node of the 
search path, (ii) the assumed model, feature correspondences, and position constraints of the 
current hypothesis (referred to as the context of the search) , and (iii) the observed data that 
is selected to infer a more precise characterization of the hypothesis. The knowledge-directed 
search represents all such information as a set of search activations (Figure 8). 
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Each search activation is a relation that uniquely associates a node of the rule network, a 

set of observed data" and the context of the search. 
Each node is an instance of a class of rule nodes which perform a specific task (e.g. acquire 

an image, detect image features or specify an object model, constraint and refinement strategy). 
The rule node classes employed in the present system are listed in Table 1. 

Image Acquisition Obtain image from specified source (camera or disk file) and set camera param-

etert! (focal length, imaging plane, focu •• etting). 

Line Detection Obtain line features according to specified limitations (line length, contra!t, 

straightne,", resolution). 

Camera Position Obtain camera position and orientation relative to the position reference. 

Feature Detection Obtain image features (line end point. and comer features). 

Model Definition Define 3-D object model and interpretation constraints. 

Hypothesis Refinement Refine object position and orientation to verify possible hypotheses. 

System Control Select appropriate search strategies and object models. Construct a. consistent 

world modeL Interact with other processes. 

Model Editor Edit object models and examine the current scene interpretation. Obtain visual 

measurement of 3-D object dimensions. Interpret constraint conditions and 

define image filters for 3-D features. 

Table 1: Rule Node Classes 

Each class has an associated set of processes and defined data structure for the input search 
context. Each instance of a rule node acts on the input context and observed data to produce 
any number of output context records. In addition, each instance of a rule node has a private 
internal memory to record specific parameters of the instantiation of the rule node or to compile 
a history of results or information acquired. 

As context information is transmitted through the network, additional information is sup­
plied by each node to eventually provide an interpretation of the world viewed by the various 
cameras of the vision system. 

The general structure of the rule network is illustrated in Figure 9. The network layout is 
flexible. Any number of instances of each class of node may he defined. For example, there may 
be any number of image nodes, each image can be assigned specialized edge or feature detectors, 
and various models or refinement strategies may be define(l, 

5.9 System Implementation 

P AMI Group's current vision system based on the knowledge-directed search provides analysis of 
single or multiple perspective images to locate parts visible in the workspace of a robot workcelI. 
In its present configuration, the system consists of a SUN 3/160 workstation, a Matrox video 
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frame grabber, and from one to three SONY eeD video cameras. The system has access 
to a PUMA 260 and a Universal Machine Intelligence RTX robot arm. Each digitized video 
frame can be directly accessed by programs running on the SUN workstation. Approximately 
ten 512x480 images may be acquired each second. No additional special purpose hardware 
is required. linage processing, feature detection, and analysis are implemented in software in 
portable 'e' code and can be run on various computer systems (without modification on systems 
supporting the X Window graphics environment [40]). The system is capable of processing 
multiple camera/viewpoint input in a few seconds. 

6 Applications 

In this section, we present a number of experiments which were set up to demonstrate the poten­
tial and technical feasibility of the developed robot vision knowledge system in manufacturing 
and space environment. Most of these results are taken from [61,28]. 

The first example illustrates the use of visual guidance for robotic assembly. In this stage 
of the assembly, the arm must place the top casing of the motor onto the core winding and 
over the motor shaft. To achieve tIlls task the system has been supplied with models of the 
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motor casing and the partially assembled motor. Manipulation of objects is specified relative to 
the coordinate systems of the object models without concern for the absolute position of each 
object. For example, the required assembly task is expressed by the command shown below. 

pickup ( from «motor top)) to (motor base) offset (0 0 5 0 1 0) ) 

The offset specifies the position and orientation of the motor top relative to the motor base. 
The method used to grasp the motor top is automatically derived from the model definition. 

Figure 10 (a) is the initial view of the scene. The motor components may be placed any­
where within the scene, although it is assumed that they have the correct vertical alignment for 
assembly. Figures 10 (b) and 10 (c) show the scene interpretation from the original viewpoint 
and as it would appear viewed from above the workspace (a view normally obscured by the 
position of the arm).l 

Figure 10 (d) illustrates the actual assemhly of the motor. Figure 10 (e) is the corresponding 
interpretation of the scene verifying correct assembly of the motor. Note the narrow tolerance 
between the motor shaft and upper casing-position error must be less than 21mll for successful 
assembly. Figure 10 (f) demonstrates the interpretation of a scene resulting from an assembly 
error. Detection of each object requires a few hundred milliseconds of processing time with 1.3 
seconds required to complete analysis of the initial scene. Edge detection and calculation of 
camera position require an additional 2.5 to 3 seconds of processing time for each image. Note 
that errors in the absolute range due to inaccurate estimate of the camera focal length or other 
factors do not have an impact on the accuracy of assembly as all measurements are relative to 
the reference cross pattern. 

The second example illustrates integration of multiple camera input shown in Figures 11 (a) 
and 11 (b). A mirror placed in the workspace provides an additional view of the scene. The 
mirror is purposely inclined relative to the table surface so that reflections of symmetrical objects 
are not mistaken for objects behind or 'inside' the mirror's surface. Although not shown, the 
position target was initially displayed to calibrate the positions of each camera. Consequently, it 
is possible to integrate the scene interpretations. (Note that the target provides the reference for 
the mirror image-it is not necessary to identify the actuallnirror which produces the image.) 

The interpretation of each image as shown from the original viewpoints are illustrated in 
Figures 11 (c) and 11 (d). Note the detection of the block hidden by the stacked block and 
cassette case and the detection of the transparent cassette case partially hidden by the box and 
only clearly visible in the mirror image. Figures 11 (e) and 11 (f) show an overhead view of 
the scene interpretation and a view from the opposite side of the workspace (as viewed from 
'behind' or 'through' the mirror). Note that the lnirror itself is not detected as no model of it 
is provided. 

The final example is concerned with an error recovery task in printed circuit board assembly. 
An image of a printed circuit board is exalnined to test for improperly inserted components. 
Since the board is viewed from the side, as shown in Figure 12 (a), any insertion errors can 
be easily detected. Figures 12 (b) and 12 (c) show the scene interpretation from the original 
viewpoint and from a position above the board. Note that since flat support conditions are 
assumed, the position error appears as a change in horizontal orientation (shown more clearly in 
Figure 12 (d». Given the available image resolution, the actual orientation cannot be accurately 
deterlnined (the assumed hypothesis matches the model features precisely); however, the precise 
location could be obtained from knowledge of the true horizontal orientation and use of inclined 
support conditions. 

'The object model is superimposed on the detected edges and identified by the object model name. Allli-nes 
of the object model are shown giving the effect of a wireframe or transparent object. 
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(b) Interpretation of initial scene 

motor 0 ••• 

(d) View after assembly task 

(I) Scene with assembly error 

Figure 10: Assembly task 
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(a) View of scene with mirror image (b) Second viewpoint 
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(c) Overhead View (d) Position Error 

Figure 12: Inspection of printed circuit board by a 3-D vision system. 
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6.1 A Vision Based Local Path Generation 

In this example, we demonstrate how the computer vision system is involved in generating a 
local path for a robot manipulator with obstacle and singularity avoidance capabilities [28}. 
The path generation system achieves singularities avoidance by establishing proper bounds for 
the rate of change of the Jacobian matrix representing the transformation between the joint 
speeds and the end effector Cartesian speed. These bounds become additional constraints for 
an optimization prohlem formulated to ohtain the opt.imal path for t.he rahat manirulator. 

The identification and precise location (Figure 13) of industrial parts, components of an 
A.C. motor, is accomplished successfully by building up the correct 3·D models using search 
strategies to recognize and locate the motor top and the motor hase. An unsymmetricql frame 
structure (Figure 14) is also built and placed in the work cell as an obstacle in order to provide 
an extra test to the path planning algorithm. 

Figure 13: Recognized objects and obstacle. 

Figure 14: Objects and obstacle in the workspace. 



www.manaraa.com

86 

The experimentation is designed with the model top and motor base located randomly on 
the opposite side of the reference pattern which is approximately placed in t.he centre of the RTX 
robot work space. After the reference pattern is located, t.he frame structure is set between the 
mot.or top and the motor base. The local path planning program gets the position of these 
parts and evaluates the path for transporting and placing the motor top on the motor base 
bypassing the frame structure. Currently, the obstacle avoidance is implemented under the 
assumption that a Cartesian path with enough clearance from the obstacle would result in an 
obstacle free path in configuration space. This assumption is only valid for a specific class oftask 
environments. The experimentation so far shows t.hat a real time robotic local control package 
in a computer based environment is readily available while a real time vision guided robotic local 
control package in which the obstacle avoidance trajectories of all joints are properly evaluated 
is still in development. 

6.2 Tracking of the Grapple Fixture for a Space Robot Arm 

To assess the feasibility of visually recognizing and tracking the location of the grapple fix­
ture used by the SSRMS, simple visual tracking experiments with a non-flight mockup of the 
fixture were conducted. The experimental goals were to determine the ease and reliability of 
identification and the accuracy of the position estimate. 

For the conditions of the experiment, it was assumed that only the visual target of the fixtme 
(black rectangle with circle and post) would necessarily be visible and that the remaining features 
of the fixtme could be obscmed, for example dming the final stages of mating the fixture and 
SSRMS grappler. 

Applying tllls technique to identification of the grapple fixtme results in tracking sequences 
as illustrated in Figme 15. The calculated position of the fixture is calculated and provides 
the appropriate transform to superimpose the object model over the detected object features. 
Identification of the fixture is reliable and requires approximately 2 seconds of processing time 
per image on the SUN 3/160 workstation with the majority of processing time devoted to 
detection of edge featmes (without use of specialized image processing hardware).2 

Orientation accmacy is sufficient to provide the fixture tip position within 1 cm of the true 
position (note the alignment of model and image featmes of the central pole of the fixtme). The 
accmacy of the range estimate from the SSRMS grappler to the fixtme is determined by the 
image resolution and view angle occupied by the fixture, as well as the precision of the specified 
camera parameters (pixel dimensions, image center and focal length). Fortunately, greatest 
accuracy is required during the final docking stage when the fixtme dominates the camera view. 
Integration of multiple estimates of object position throughout the tracking sequence could 
provide improved accuracy. 

7 Conclusions 

In this article, we have presented a robust robot vision knowledge system which demonstrates 
real-time capability in carrying out robot vision tasks in a robot workcell environment. The 
system accepts two types of image input: the range data from laser scanner or structmed 
lighting and grey tone images from CCD Camera. It uses attributed graph and hypergraph as 

2Processing time, including feature detection is affected by overall image complexity. 
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Figure 15: Tracking Grapple Fixture 
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representation models of physical objects and rule network as procedural knowledge for effective 
recognition and location of 3-D objects. Recognition of 3-D objects can be achieved using 
AHR construction from range images; database search for retrieving candidate models; and 
hypergraph monomorphism algorithms for establishing structure correspondence between the 
images and the object models. If' objects of known model are to be recognized, geometric 
constraints and domain knowledge can be used in the search of visual features on the perspective 
images. We have shown that appropriate use of domain knowledge will greatly reduce the search 
time and increase the reliability and accuracy since noise from various sources at various levels 
can be excluded in the search and the decision process. We have also described in the paper the 
system's capability of synthesizing 3-D shapes of an object from its AHR's derived from range 
images or from local visual and geometric features extracted from perspective images. The real­
time and reliable performance of the vision system to several industrial tasks have demonstrated 
the system's potential and capacity for industrial application. 
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Abstract 

This paper describes useful algorithms, developed for model-based object recognition, which happens to 

be one of the basic problems in the area of Robot Vision research. The important vision-oriented 

functions derived through these algorithms are: (i) the generation of the3D convex hull of an object to 

calculate its feasible stable positions, (ii) the determination of the pattern of the visible surfaces in the 

orthographic projection and fmally (iii) the extraction of characteristic features invariant to the object 

rotation. The parameters will be used for a consequent matching phase. The feasibility of the algorithm is 

demonstrated through several sample objects. 

1 Introduction 

In order to realise a flexible assembly system, an industrial robot must be able to interact with its 

environment through visual information. This paper describes the development of a CAD-based machine 

vision system. The present system, in principle, generates several vision-oriented functions which enable 

one to recognise the pattern of visible surfaces of an object in the orthographic projection for each of its 

stable positions on the worktable. 

A flexible system for 3D object recognition necessitates the development of an effective modelling tool 

suitable for a general description of 3D objects. Geometric modelling is used in CAD/CAM research for 

easy model generation, graphic visualisation and for the support of the vision analysis. 

Advantage of using CAD modellers are: 

an unambiguous representation of 3D objects is possible 
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object models generated by a CAD modeller, after proper transformation, may be used for the 

evaluation of pictures of an object 

the recognition and analysis of an object is possible without physically scanning the real object. 

A CAD-based machine vision system thus provides information required for the automatic analysis of 

camera data. 

A survey of various model-based recognition systems is reported in [1]. Baumgart [2] developed a 3-D 

geometric modelling system (GEOMED) for the application to computer vision. Hermen[3] established 

the three-dimensional structure of the visible surfaces of an object from a single view by assuming the 

object in the shape of a polyhedron which has perpendicular adjacent faces and edges. Koshikawa et al 

[4] have used a solid modeller (GEOMAP) for finding the stable position of the object from observed 

surface normals. Bolles et al [5] have designed a CAD model based vision system (3DPO) for advanced 

research on Robot Vision. Henderson et al [6] have used a Computer Aided Geometric Design (CAGD) 

system for visual recognition and manipulation of an object. 

In the present work, the objects are modelled using a CAD system called ROMULUS, which offers the 

facilities of defining and manipulating models of 3D objects. Bodies are created in ROMULUS using 

standard shapes such as cubes, blocks, wedges, cones, cylinders etc. A complex object is constructed by 

binary operations such as union, subtraction or intersection between the bodies already defined. The 

transformation is provided to the system through a translation, rotation or change of the size of a body. 

The modeller is equipped with a CAD/CAM interface whose format is called FEMGEN (Finite Element 

Mesh GENerator). It is used to access the geometrical data from the CAD system. A description of the 

FEMGEN format is available in [7]. The geometrical data in the FEMGEN format consists of vertices, 

edges and faces of the object in the 3D space. 

The vertex points of the object in the 3D space are given by the coordinates (x,y,z) with respect to a 

world coordinate system. Each linear edge of the object is described as a pair of points e=[p1,p2], where 

pI is referred to as the starting point and p2 as the end point of the edge. Each curved edge of the object is 

described as a circular arc consisting of three points e=[p1,p2,c], where pI is the starting point, p2 is the 

end point and c is the center point of the arc. Each surface of the object is described as a sequence of 

edges f=[e1,e2,e3,e4] which defines a closed, non-self intersecting chain of linear and curved line 

segments. 

The generated vision-oriented functions with the above mentioned data structure as input are: 

1. Generation of the 3D convex hull 

2. Generation of the visible surface pattern 
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3. Extraction of the characteristic features 

2 Algorithms 

The entire algorithm for generating these vision-oriented functions are subdivided into two parts - the 

preprocessing part and the main part as shown in Fig. 1. 

In the preprocessing part, the input data (vertex, edge and face list of the object) is read and the boundary 

and the internal regions of each of the object are identified. Thereafter, the curved edges and faces are 

interpolated to polygonal form. In the main part, the 3D convex hull of the object is first calculated and 

consequently the list of stable positions is obtained from the face list of the convex hull. For each stable 

position of the object on the worktable, the pattern of visible surfaces for an orthoghaphic projection is 

generated and the characteristic features are extracted from this pattern for use in a subsequent matching 

stage. 

Preprocessing part 

1: [make_regions] Construction of a closed polygonal chain of the faces and identification of the 

boundary and internal regions. 

2: [plane_shapes]--Conversion of the body into a polygonal form by interpolation of the curved 

edges and subdivision of curved faces into pieces of plane faces (see Fig. 2). 

2.1: Replace all the curved edges by piecewise linear segments. 

2.2: Transform the curved faces into polyhedra by joining the corresponding points 

representing the curved edges. 

Main part 

1: [convex hull_3D] Generation of the 3D convex hull of the object. 

2: [stable_position] Generation of the list of stable positions. 

3: For each stable position: 

[projection] Project all the faces of the object on the worktable and determine the 

resulting total face. 

[writejeatures] Determine the characteristic features of this total face in the output data. 

The following sections describe the detailed algorithm for each task of the main part. 
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2.1 Algorithm 1 [convex hull-3D] 

Input: 
Output: 

Set of points defining the object in 3D space. 
Convex hull defined by its faces and edges. 

1: [initialjace] Select the initial face F (see Fig. 3). 

1.1: Search for a point A with the maximum value of z-coordinate from the given set of 

points. 

1.2: Defme a point H on the plane z = z max (H "# A). 

1.3: Rotate the plane z = z max about the axis AH until it hits the first point B from the 

given set of points. 

1.4: The plane containing A & B is now rotated about AB until it hits a third point C which 

also belongs to the given set of points. 

1.5: Determine all the points of the set which lie on the plane containing the points A, B & 

C. 
1.6: At this stage, apply the 2D convex hull algorithm proposed by Andersen [8] to 

generate the resulting convex hull (polygonal chain) for all the points of the set lying on 

this plane. 

1.7: The convex hull so obtained is the desired initial face. 

2: For all the edges k of the face F, if k is not in storage, store k as unmarked, otherwise mark k. 

3: [face_calculation] For all unmarked edges k' of F, calculate a second face F'to k'and F (see 

Figs 4(a) & (b)). 

3.1: Calculate the angle a between the face F and the other faces (eg., pI, p2, p' is one of 

such face). 

3.2: Select p' so that a is minimum. 

3.3: Calculate the equation of the plane containing the points pI, p2 & p'. 

3.4: Determine all the points that satisfy the equation of this plane. 

3.5: Apply the 2D convex hull algorithm for the resulting set of points 

3.6: The convex hull so obtained is the new face F'. 

4: Return to step 2 recursively. 

The algorithm terminates only when marked edges are in storage, since in that case no more recursive call 

takes place. An edge is said to be marked when it is calculated from two different faces and both the faces 

containing this edge is found. Declaring all the edges as marked signifies that each edge is formed as an 

intersection of the two adjoining faces of the desired convex polygon. Thus the convex polygon is fully 

defined through its edges and faces. 
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2.2 Algorithm 2 [stable-position] 

Input: List of the faces of the convex hull. 
Output: List of stable positions of the object. 

1: For each face of the convex hull on the worktable, use the transformation matrix (linear and 

rotational transformation) to calculate the new coordinates of all its vertex points. 

2: Check for a stable position. 

If the projection of the center of gravity lies within the bounded polygon of the convex hull face 

on the worktable, the position is stable and otherwise the position is not stable. 

2.3 Algorithm 3 [projection] 

Input: Object B in a stable position with the transfonnation matrix. 
Output: Pattern of visible surfaces after projection. 

This algorithm may be subdivided into the following steps: 

1: [transform_object] Calculate the new coordinates of all the vertex points of the object using the 

transformation matrix corresponding to the stable position. 

2: [oriencobject] 

2.1: For all the faces F of B, if the face F is at right angles to the worktable then: 

• Remove the face F from the face list of B. 

• Insert the face F in the list of the faces of B which are at right angles to the 

worktable. 

2.2: For all the remaining faces with their internal regions: 

• Determine the starting point (smallest y-coordinate which has smallest x-coordinate) 

and orient the polygonal chain of the face in a clockwise direction. 

• Determine the maximum stretching of the face in the x-and y-direction. 

• Determine the equation of all the edges of this face. An illustrative example is shown 

in Fig. 5. 

3: [interseccobject] 

3.1: Construct a linear list 1 with the boundary and the internal region of all the faces. 

3.2: For all pairs of the faces Fl and F2 from the list 1: 

• If the maximum stretching of Fl and F2 intersect with themselves, test with each 

edge of Fl and each edge of F2, whether an intersection point exists. If so, 

subdivide the edge at the point of intersection (see Fig. 6). 
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4: [sorcaltitude] 

4.1: Set F2 = face list of b, set face list of B = empty. 

4.2: So long F2 is not empty: 

• Search the face F1 from the face list F2 so that no other face from the face list F2 

lies above the face Fl (see Fig. 7). 

(i) If a point v of F1 has the same value of x and y coordinate as the point w from 

F2 but has a higher value of z-coordinate, then the face F1 lies above the face 

F2 (Fig. 7(a)). 

(ii) If a point v of F1 has a value of z-coordinate higher than that of a point w in 

face F2 but F1 lies within the boundary of F2, then the face F1 lies above the 

face F2 (Fig. 7(b)). 

(iii) If a point v of Fl has a higher value of z-coordinate than that of a point w in 

face F2 but F2lies within the boundary ofF1, then the face F1lies above the 

face F2(Fig. 7(c)). 

• Remove the face F1 from the face list F2 and insert Fl as the fIrst element of the 

face list of B. 

5: [visible_faces] Replace all the faces by its visible parts through replacement of their visible 

portions only when the other parts are covered by the overlapping faces (see Fig. 8). 

5.1: With all the faces F2 from face list of B: 

• With all the faces Fl which are successor ofF2: 

(i) IfF1lies within the boundary ofF2, remove F1 from the face list and proceed 

to the next face. 

(ii) Replace the boundary of the face Fl and all its internal regions by its visible 

parts through replacement by their visible portions only when the other parts 

are covered by the overlapping faces. 

(iii) If F2 lies within the boundary of FI, insert F2 as the internal region of F1, 

remove F2 from the face list and proceed to the next F2. 

6: [unitjaces] Join all the visible parts of the faces from the cluster into a total face (see Fig. 9). 

6.1: With all pairs of face F1, F2 from the face list of B: 

• If the faces F1 and F2 have one common edge, then perform the following steps: 

(i) Insert the boundary ofF1 to the boundary ofF2 and the internal regions ofF1 

to the internal region of F2. 

(ii) Remove Fl from the face list. 

6.2: Set Fl = face list of B without the fIrst face. Set boundary of the total face = boundary 

of the frrst face. Insert the frrst face as the internal region of the total face. 

6.3: So long Fl is not empty: 

• Search a face F2 from the face list Fl so that it touches the boundary of the total 

face. 
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• Insert the boundary of the face F2 to the boundary of the total face. 

• Insert the face F2 as the internal region of the total face. 

• Remove F2 from the face list of Fl. 

2.4 Algorithm 4 [write-features] 

Input: Visible surface pattern after projection. 
Output: List of the characteristic features extracted. 

1: Determine the perimeter of the total face and calculate the length of each edge in a nonnalised 

fonn with respect to the perimeter. 

2: Output the features of the total face. 

• Detennine the lenght of all the edges. 

• Determine the face area . 

• Merge the edges which are in contact with each other. 

• Determine the type of face (linear, curved or mixed). 

• Determine the perimeter of the face. 

• Output the type and the length of all the edges. 

• Output the features of all the internal regions. 

3 An application Example 

The above algorithm was implemented in C language in a Micro V AX II workstation. The results, 

depicted in Figs 10 to 13, show the convex hull, the possible stable positions and the visible surface 

pattern corresponding to different stable positions of some sample objects. 
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KNOWLEDGE-BASED ROBOT WORKSTATION: SUPERVISOR DESIGN 

Robert B. Kelley 
Electrical, Computer, and Systems Engineering Department. 

1. INTRODUCTION 

Rensselaer Polytechnic Institute 
Troy, NY 12180 

There are several problems currently inhibiting the growth of automation in industry. In 

particular, the growing interest in the application of robots to assembly tasks is being limited by 

the way such tasks are programmed and executed. Current robotic assembly systems force an 

exact, detailed description of the task to be exec~ted. To perform a given assembly task, the 

detailed actions of the robot, as well as the successive positions and orientations of the gripper, 

must be specified. In addition, the work environment of the robot and the state of the objects in 

it must be completely controlled for the robot to successfully accomplish its task. These 

requirements could be reduced by the use of a variety of sensors and, in this way, allow the 

degree of uncertainty in the environment to be increased. Nevertheless, the use of sensors alone 

could also make the programming phase more difficult. 

The basis of this problem stems is the lack of integration of the workstation environment 

model into the system design which forces the states of objects, manipulators and grippers to be 

completely controlled. Such an approach often prevents the system from recovering from 

unplanned events or errors that might occur during task execution. Further, the task plan is 

entered either through a teach-box or a robot programming language such as VAL. The entry 

requires considerable effort and skill on the part of the programmer. If any execution steps must 

be modified, this tedious programming task must be completely repeated in most cases. 

This leads naturally to the consideration of intelligent, knowledge-based robot workstations 

which have integrated planning and sensing capabilities and allow for both automatically 

programming the robot and successfully executing the assembly task in spite of uncertainties in 

the task environment. Such a robotic system would interface with the user at a level that allows 

task plans to be entered in terms of parts to be moved and mated. It would also allow organized, 

automatic recovery from unexpected, non-deterministic deviations encountered during execution 

through the maintenance of a current environmental model. A system possessing these 

capabilities would greatly promote flexible knowledge-based automation because it would 

provide a very high level user interface and would not require frequent operator intervention. 

Systems attempting to solve some of these problems are described in the literature [Chochon 

and Alami 1986; Vijaykumar and Arbib 1987; Angermuller and Hardeck, 1987; CleJ1llont, 

Hermant and Gaspart 1986]. However, most of the proposed intelligent robotic systems are 

NATO AS! Series, Vol. F 66 
Sensor-Based Robots: Algorithms and Architectures 
Edited by C. S. George Lee 
© Springer-Verlag Berlin Heidelberg 1991 
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made specific in the early stages of the planning process in the sense that they are tied to some 

of the characteristics of the robot and other elements that will carry out the assembly. 

In contrast, the goal of a cooperative research effort involving the Institut de Cibemetica of 

the Universitat Politecnica de Catalunya and the Robotics and Automation Laboratories of the 

Rensselaer Polytechnic Institute is to build an automatic programming and supervision robotic 

knowledge-based system which is able to transform a symbolic description of an assembly task 

and a set of pieces, into a complete, physical assembly. It is a hierarchical knowledge-based 

planning and execution system that will allow manipulators and sensors to intelligently perform 

industrial assembly tasks in a variety of robotic workstations. Incorporated in this system will 

be a sensor-based model of the workstation environment so that deviations from the expected 

world model can be sensed and corrected by automatic on-line recovery mechanisms.The 

remainder of this article is on the design, implementation and successful testing of one level of 

this system, the Supervisor. The Supervisor is responsible for managing the on-line execution 

of a given task plan in a specified workstation. The presentation begins with a summary of the 

operating framework and objective followed by an overview of the knowledge-based robotic 

system. 

II. FRAMEWORK AND OBJECTIVES 

The development of such a system requires the identification and solving of major gaps in 

current technology and the bringing together of a variety of scientific and technical domains. 

Among these are programming and description languages, modeling, planning, motion and 

force control, computer vision, sensor fusion and error recovery. Some contributions in these 

fields are outlined below and can be found in more detail in some recent papers [Basaiiez et aI., 

1988; Juan and Paul, 1985, 1986; Ilari, 1987; nari and Reyna, 1986; Kelley and Bonner, 1985; 

Kelley, 1986; Thomas and Torras, 1988]. 

The output from this system will be the execution of the desired assembly task in the given 

robotic workstation. A variety of manipulators may be used in order to complete the task. For 

feedback purposes, the environment will be continuously monitored by sensors which may 

include 2D and/or 3D vision systems, gripper based proximity sensors and tactile arrays, 

grasping force sensors, wrist force/torque sensors, etc. By combining manipulation with 

abundant sensing, deviations from desired actions and locations can be detected and corrected. 

The underlying design approach of this knowledge-based system is the Principle of Least 

Commitment. Under this principle, choices are deferred to lower levels of the hierarchy until a 

decision is forced to be made in order to continue successful planning and execution of the task. 

For example, the initial planning level does not consider specific characteristics of the particular 
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robotic workstation, but relegates these decisions to lower levels in the hierarchy. Also, once 

the assembly is mapped to a particular environment, the execution order of the tasks is not 

defined until the on-line levels receive the list of tasks to execute. Analogously, the decision 

about which sensor to use to get some information at execution time can be postponed, in some 

cases, until the moment this information is needed. This design approach provides the system 

with greater flexibility and allows it to make a more efficient use of the available resources. The 

hierarchical programming and execution system being developed will map user-specified three 

dimensional part assembly tasks into various target robotic workstations, and will execute these 

tasks efficiently using the manipulators and sensors available in the workstation. 

Ill. KNOWLEDGE-BASED ROBOTIC SYSTEM OVERVIEW 

The hierarchical knowledge-based system being designed is presented in Figure 1. This 

system was first reported by [Kelley and Bonner 1985], and refined descriptions were 

presented in [Moed and Kelley, 1987; Basanez et al., 1988; Moed and Kelley 1988]. As seen in 

Figure 1, along with the forward planning and execution system, there is a feedback path from 

each level to replan or re-execute an assembly if unexpected environmental deviations occur. A 

brief description of each component of the system follows: 

A. Databases. 

DAM: Dynamic Assembly Model contains the geometric description of the current state of 
the parts being assembled. 

SAD: Static Assembly Database provides the descriptions of parts being assembled in 
terms of geometric constraints and sensor based information. 

DEM: Dynamic Environment Model provides the current state of all objects in the 
workstation in terms of sensor based features. 

SED: Static Environment Database contains the initial state of the workstation. 

B. Assembly Planner. 

The user input to this system is a part-centered description of the desired assembly. This 

input describes which parts are to be mated and includes specifications on how the parts should 

be joined, in terms of surfaces and features, as well as other geometric relationships between 

the objects. One method for achieving this assembly description is through the use of a 

Computer Aided Design (CAD) representation of the parts involved in the assembly. By using a 

CAD tool as the user interface, an assembly designer would be able to visually manipulate the 

desired parts displayed on a video screen to describe the desired assembly. It would no longer 
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be necessary to tediously program the task in a conventional manner, using a language such as 

LAMA [Lozano-Perez and Winston, 1977] or AUTOPASS [Lieberman and Wesley, 1977]. 

DAM SAD OEM SED 
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Figure 1. Knowledge-based robot system architecture. 

The assembly planner is an off-line automatic program which geometrically transforms 3D 

objects, and plans what must be done to achieve the physical assembly of a part based on part 

constraints, and is not concerned with how the actions are accomplished. Using the SAD, this 

input can be translated to describe the specific task in terms of known part features. If a severe 

error occurs during task execution which prevents replanning or reexecution by the lower levels 

of the hierarchy, the assembly planner can consult the DAM, which contains the current state of 
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the assembly, to replan the transformation of parts and try another attempt at successful 

executiQn. 

The assembly planner implements a constraint-based model of the tasks, in which object­

centered planning consists of the progressive refinement of the initial high-level assembly 

description through the successive application of constraints inherent in the different assembly 

operations. Three types of constraints are considered: 

1. Shape-matching constraints between the mating parts of the workpieces to 
assembled (complementary shape and similar parameters); 

2. Constraints on the degrees offreedom (degrees-of-freedom) that defme the relative 
positions and orientations of workpieces (aligned, coplanar, etc.) [Herve, 1978]; 
and 

3. Constraints of non-intersection between workpieces. 

It must be noted that accessibility constraints, those limiting the possible sequences in which 

an assembly can be built, are subsumed under the third type above, since they can be handled 

by detecting intersections between moving workpieces. Three separate operators have been 

developed to deal with the three constraint types, their activity being coordinated by means of a 

message-passing control structure. A detailed description of each operator, as well as of the 

control structure, is provided in Thomas and Torras [1988]. The procedure sketched is 

essentially based on that proposed by Ambler and Popplestone [1975], but conveniently 

simplified and refmed to increase its efficiency and to permit a uniform treatment of some 

special cases. 

Non-intersection constraints are used to discard those relative poses of workpieces which, 

despite satisfying all shape-matching constraints and constraints on the degrees-of-freedom, 

lead to interferences. If the degrees-of-freedom that cause the interference are those 

characterizing an assembly operation, then the above constraints should be more precisely 

named accessibility constraints, since they deny accessibility for a given assembly sequence. 

Two ways of dealing with this type of constraint have been explored. The first requires the 

explicit construction of Configuration Space (C-space). The second is based on an implicit 

representation of this space. More concretely, the former involves carrying out a uniform sweep 

of C-space, which leads to a concise representation of this space as a list of ranges (forbidden 

areas) of one variable. The functions and predicates used to define C-obstacle boundaries are 

those described in Canny (1986). On the other hand, the implicit way of dealing with C-space is 

based on the use of local experts to move along C-boundaries, as proposed by Donald (1984). 

A very simple message-passing control structure has been devised to coordinate the activity 

of the three operators described and adequately combine the limitations on the possible solutions 
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imposed by each of them. Essentially, it works by pruning a tree of alternatives through the 

application of the most restrictive constraint at each stage. The usual cyclic sequence of operator 

application that results is fIrst shape-matching constraints, next degree-of-freedom constraints 

and fInally non-intersection constraints. 

This off-line planner produces an assembly plan which consists of the object 

transformations which are required to produce the desired assemblies. 

C. Task Planner. 

The task planner revises the assembly plan by mapping the object transformations onto 

specifIc available manipulators and sensors which are under the control of on-line Specialists. 

The off-line task planner produces a detailed task plan which describes the specifIc manipulation 

and sensing actions which are needed to achieve the geometric assembly. The task planner also 

has access to the SED which provides a model of the nominal workstation environment. If an 

unrecoverable error occurs during execution of the task, the task planner can consult the DEM, 

which contains the current state of the environment, to remap transformations onto other 

manipulators. If this is impossible, the task planner requests a new assembly plan from the 

assembly planner. 

Three basic operations on the pieces in an assembly task have been considered: picking, 

movement, and insertion. For each of these operations, a corresponding off-line Specialist has 

been designed: the Grasping Specialist, the Trajectory-Finding Specialist, and the Insertion 

Specialist. 

From a description of the assembly operation to be performed, the Grasping Specialist 

generates a list of grasping sites on the workpieces to be assembled. The list is ordered 

according to a measure of the grasping site qualities (stability, tolerance to uncertainties, etc.). 

The list generation process starts by determining the portion of the workpiece surface that will 

remain accessible after the assembly operation has been completed; this is done by performing 

some specifIc subtraction operations on the boundary-based representation of objects provided 

by the CAD database. Next, a search for certain types of grasping sites (two parallel faces, face­

edge, face-vertex, etc.) is carried out on this surface, guided by an evaluation function reflecting 

the a priori quality of each site. Finally, sensor strategies to verify the correct execution of each 

grasp, together with recovery procedures to apply in case of slippage, rotation of the workpiece 

within the gripper and other anomalous situations, are included for each site. 

Currently, the Trajectory-Finding Specialist solves a simplified version of the general 

problem of generating collision-free trajectories for a 6 degree-of-freedom manipulator, namely 
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that involving a non-articulated mobile body in a 2D environment. This is analogous to the 

motion of a gripper on a table. The approach followed combines an initial global search, based 

on the R-MAT model of free-space [llari, 1987], with a subsequent local search in C-space 

[lIari and Reyna, 1986]. The R-MAT model is a subset of the medial axis transform whose 

underlying graph is a minimal deformation retract of the Voronoi diagram that can be reached 

from every point in free-space through a straight-line motion while preserving the clearance 

existing at that point. Depending on the cost function defined upon this graph, different global 

paths will be retrieved by a best-first search process. The underlying idea is to supply to the 

subsequent local search process the global path most likely to lead to a C-space solution path. 

Three heuristics have been built into the local C-space search, one of them guides the evolution 

of the translation degrees-of-freedom of the mobile body and the remaining two guide the 

evolution of its rotational degrees-of-freedom. A detailed description of the model, the search 

procedure and.the heuristics implemented can be found in lIari [1987]. 

The Insertion Specialist determines the fine motion strategy to put the objects in the final 

position in the assembled product. Two phases have been distinguished: the approach phase, 

before physical contact between the objects is made, and the interaction phase, in which contact 

forces and torques are generated. In this latter phase, not only the trajectory, but also active 

compliance must be planned. To do this, a generalization of C-space that makes use of an elastic 

model of the objects surfaces is proposed. From the generalized C-space, the insertion specialist 

determines the fme motion of the gripper, the compliance center and frame, and the force and 

torque control references. 

The output of the task planner is a set of workstation specific instructions in an 

AUTOPASS-like language which specifies the positioning, mating, and sensing of objects in 

the workstation. This output is called the task plan. 

D. Supervisor. 

The Supervisor disburses the task plan in an organized manner to a set of Specialists. The 

supervisor is responsible for the real-time management and monitoring of the assembly process, 

the on-line coordination of these specialists, and for error recovery. The Supervisor is provided 

with the task plan and delegates the specified actions to a group of Specialists. The Supervisor 

is responsible for managing the resources of the workstation, which in this case are 

manipulators and sensors, but may be extended to include the work volume that a task requires. 

To optimize task execution, jobs are scheduled to execute in parallel as resources allow. The 

Supervisor contains experimentally determined error recovery routines for inconsistencies that 

cannot be handled by the individual Specialists. The Supervisor is also responsible for 

maintenance of the DEM and DAM as the execution process continues. If an unrecoverable 
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error occurs during this execution, the Supervisor requests a new Task Plan from the Task 

Planner. 

E. Specialists. 

Each Specialist is an on-line, independent process that is expert in performing one type of 

task. Each specialist may utilize a variety of devices such as a 6-degree-of-freedom robotic arm, 

a stereo vision system, and so forth to accomplish its specific task. Examples of Specialists are: 

Gross Motion, Pick, Place, Grasp, 2D Vision Object Detection, 3D Vision Ranging. 

Each on-line specialist is a separate process running in a multiprocess environment. This 

allows the concurrent parallel execution of several distinct specialists. The execution of the on­

line specialists is monitored and managed by the supervisor as discussed above. Upon receiving 

detailed information abQut the specific task at hand from the supervisor, the on-line specialists 

control the necessary manipulators, sensors, and peripherals to complete the operations. Upon 

completion, each on-line specialist returns a message which identifies the state of objects in the 

environment that have been transformed. If an error occurs, the message contains information 

detailing the error conditions, if known. Some local error recovery routines may be executed by 

the individual on-line specialist if the deviation is sufficiently simple. 

The Specialists communicate with devices (such as sensors and manipulators) in a device 

generic language. This language passes though an Intelligent Device Interface (101) where it is 

translated into device specific commands. By using a generic language, the system can be 

transported from one environment to another and the Specialists will not have to be modified. It 

is the function of the Intelligent Device Interfaces to translate the generic vocabulary into 

commands that the actual workstation device can understand. This method of interfacing allows 

different physical devices to be substituted without redesigning the upper levels of the 

hierarchy. 

With this overview of the complete system description, the features and functions of the 

Supervisor can now be examined in depth. 

IV. DESIGN OF THE ON-LINE SUPERVISOR 

This section presents an initial design of the On-Line Supervisor which provides a structural 

base from which a robust knowledge-based system can be derived. In many ways, an on-line 

Supervisor of robotic tasks is similar to the Operating System of a typical computer. Both must 

be able to manage a host of jobs executing in real time with a finite set of resources. An 

Operating System must be able to schedule tasks, allocate resources, and provide 
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communication links. Other added features of an Operating System might include parallel job 

execution, fault tolerant design and error reporting. Similarly, the Supervisor design can be 

separated into five main functional blocks: Resource Management; Concurrency Detection; Task 

Scheduling; Error Recovery; and Interprocess Communication. For the five functional blocks to 

work together cohesively, a background automaton was developed which drove the assembly 

execution to completion. Also, an interface was designed which provided the ability to create an 

off-line task plan. 

A. Background Automaton 

The workspace of the robotic workstation is separated into various objects each having a 

specified set of attributes. As these objects are moved around the workspace, they are 

transformed from one state to another. Under normal circumstances, the features of an object 

after it has been transformed is the end state that was desired. However, errors may sometimes 

occur during execution which must somehow be corrected. For this purpose, an automaton was 

created to keep track of the object states, changes, and errors. 

Workspace objects can be either parts, tools, platforms, or manipulators. The state of an 

object reflects its position and orientation and specifies features which relate to the object in 

question. An instance of an object transformation specifies the part/manipulator/tool which is to 

be changed in terms of its position, orientation and features as well as the desired end 

conditions for this object. Included in the information for manipulators is the motion through 

which the object will be transformed. 

Objects can be in one of three states, Valid, Unvalidated, or Invalid. A Valid state is 

assigned to an object when its position and features match the desired end conditions specified 

in the transformation entry. An Invalid state is assigned when there is a deviation from the 

desired end conditions after a transformation. An Unvalidated state is assigned to an object 

while the object is being transformed. This reflects the fact that during the transformation, the 

location of the object is indeterminate. 

The automaton in Figure 2 describes the process through which objects in the workspace 

are transformed from one state to another. Initially, all objects are in known positions, so each 

object is in a Valid state. When an instance of an object transformation is encountered, the 

object moves from a Valid state to an Unvalidated state. The object remains in an Unvalidated 

state until the transformation is done. When the transformation is completed, sensors determine 

whether the object is in the desired location. If the object is located where expected, the object 

enters a Valid state once again. If the objects position, orientation or features deviate from the 

desired, it enters an Invalid state. If the object is in an Invalid state, one of a set of error 
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recovery routines is executed in order to correct the object. When one of these routines is 

executed, the object is once again transformed and enters an Unvalidated State. This process 

continues until either the object enters a Valid state, or all relevant recovery routines are 

exhausted. If the latter occurs and the object is still in an Invalid state, the Supervisor requests 

assistance from the Task Planner to replan execution from the current workstation state. 

Transformation 

r Erro 
Encountered 

Valid State 

~ 

" 
Unvalidated 

State 

4 

" 
Invalid State 

Validation 

Error 
Recovery 

Figure 2. Background transformation state automaton. 

B. Task Planner Interface 

The Supervisor requires a list of tasks to run in order to begin execution so a simple task 

plan language was developed. This language segments tasks into two types: Observations and 

Transformations. Observations are tasks which require only sensing, and no motion or 

manipulation of objects in the workstation. Transformations are tasks that require manipulation 

of objects in the workstation, but may include sensing as well as the manipulation. Finding the 

location of an object using a 2D vision system is an example of an Observation task. Grasping a 

part with a force of 3 kg is an instance of a Transformation task. Each entry in the task plan 

contains the name of the task to be executed, parameters specifying the desired location and 

features for a Transformation, or simply Specialist specific parameters required for an 

Observation. The task plan entry also includes the objects in the workspace that will be 

Transformed/Observed in the process of execution. This last piece of information is required 

later by the Concurrency Detector. Figure 3 presents a sample task plan for a Pick/Insert Task. 

Upon startup of the current assembly system, the Supervisor reads in the list of tasks which 

describe the workstation specific Transformations and Observations that must occur. First, it 
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translates the entries into a form which will drive the automaton, and then assembly execution 

begins. 

C. Resource Management 

Associated with each task is a set of resources available in the workstation that are necessary 

for the successful execution of that task. Resources required by a task are manipulators and 

sensors that must be used to carry out the execution. For example, the execution of a PICK task 

requires the PUMA arm, Gripper, Force Sensor, and Proximity Sensors as resources. The table 

of resources required for defined tasks is named the Static Resource Table since the resources 

required by a task do not change over time. In general, given a set of Specialists S {Sj e S; 

l$i$n} and a set of Resources R {rj e R; l$j$m}, then S x R is an n x m matrix where each 

row i specifies the set of Resources Ei needed by si {Ei e R}. For two Specialists Sj, Sj, if 

Ej 1\ Ej = <1>, then the two Specialists do not require the same resources. 

The Resource Manager must also keep track of the resources being used during the execution of 

the Task Plan. Whenever a task begins execution, the Resource Manager adds the resources 

associated with that task to the Dynamic Resource List. Resources not on this list are available 

for assignment to tasks that are waiting to run. When a task has completed, its resources are 

deallocated from the Dynamic Resource List. Successful management of this Dynamic Resource 

List promotes task concurrency, since tasks requiring the same resources will be detected and 

prevented from executing simultaneously, thereby avoiding a conflict in the assembly process. 

D. Concurrency Detection 

Since the Task Plan does not provide an itemized list of jobs that can be run concurrently, 

an algorithm must be present in the Supervisor to perform this function. Using conventions 

developed in Operating Systems design, a method was created to detect execution parallelism in 

a set of tasks. 

1) Conditions for Parallel Execution. Given a list of steps in a program, one can determine if 

two consecutive steps can be executed in parallel by using Bernstein's Conditions [Bernstein 

1966]. These conditions state that given a variable A: 

W 1 (A) 1\ W2(A) = <I> 

W 1 (A) 1\ R2(A) = <I> 

R 1 (A) 1\ W2(A) = <I> 
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where Ri(A) is the Read Set of all variables A for Step i, 

and Wi(A) is the Write Set of all variables A for Step i. 

TASK TYPE VARIABLES 

1. FIND Cage A Observation Cage A 
Vision C 

2. FINOCageB Observation CageB 
Vision 0 

3. PICK Cage A Transformation CageA 
ArmE CageB 

4. GROSS MOTION Transformation Cage A 
Cage A, Cage B CageB 
ArmE Card 1 

5. PLACE Cage B Transformation CageB 
ArmE Card 1 

Notes: 

The task FIND uses 20 vision to locate objects in the workspace. 

The task PICK removes a PC card from a card cage with a robotic 
manipulator. 

The task GROSS MOTION moves the robotic manipulator from one 
location to another. 

The task PLACE inserts a PC card into a given card cage. 

Figure 3. Sample task plan for a Pick!Insert task 

Given these constraints on execution concurrency and a list of programming steps to run, it 

is possible to extract steps which may run in parallel, and steps which are Data Dependent 

[Hwang and Briggs, 1984]. A line is data dependent on a previous step when one of 

Bernstein's conditions is violated by the two lines. In simple terms, data dependent lines both 

try to access the same variable. If one line changes the variable before another step can access it, 

the earlier step changes the data received by the later step when it does access the variable. This 

can cause problems if the old data was required by the second line, since the old data is now 

gone. By enumerating all the data dependencies between individual steps, non-dependent steps 
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can be detennined and executed concurrently, while dependent steps will execute in the proper 

order. 

Figure 4. Concurency graph for example task plan. 

Bernstein's conditions can be modified to apply to tasks in a robotic workstation by 

segmenting tasks into the two types described earlier, Transformations and Observations. These 

task types can be mapped onto Bernstein's conditions by associating Object Transformations 

with Write and Object Observations with Read. Objects such as parts and tools in the 

workspace become the variables of the data dependent enumeration. A concurrency graph is 

easily constructed for each Task Plan, where nodes represent tasks, and arcs are placed between 

dependent tasks. The graph for the Task Plan of Figure 3 is presented in Figure 4. As tasks 

execute in the workspace, other jobs are blocked from executing if they are dependent upon 

waiting or running tasks, as shown by the graph. When these dependencies are resolved, the 

job can be scheduled for execution. 

E. Task Scheduler 

It is the responsibility of the Task Scheduler to schedule the steps in the Task Plan for 

execution using the information provided by the Resource Manager and Concurrency Detector. 

The Scheduler selects a job from a list of waiting tasks, signals the Communication Center to 

begin execution of that job and calls the Resource Manager to update the Dynamic Resource 

List. Because of the possibility of process starvation, an algorithm was developed which 

schedules tasks that have been waiting for resources the longest before scheduling r~c~mly 

available jobs. This prevents "hogging" of resources by certain sections of the task plan. The 
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algorithm makes use of a Blockledlist which contains tasks whose data dependencies have been 

removed, yet whose resources are not yet available. Task number i on the Blockedlist is named 

B[iJ. 

WHILE Not Empty(T) OR Not Empty(Blockedlist) DO 
BEGIN 

FOR i:= 1 to n 
BEGIN 

IF Data Dependencies for T[i] are removed AND T[i] is not on Blockedlist THEN 
Add T[i] to End of Blockedlist. 

END; 
IF Resources Needed by Head of Blockedlist are Available THEN 

BEGIN 
Execute Head of Blockedlist; 
Remove Task from Blockedlist; 

END; 
B..SE 

FOR i:= Head + 1 to End of Blockedlist DO 
IF Resources Needed by B[i] are Available AND 
No Resources Needed by B[i] are Needed by Head of Blockedlist THEN 

BEGIN 
Execute B[i]; . 
RelOOve Task from Blockedlist; 

END; 
END; 

END; 
END; 

END; 
END; 

This algorithm forces tasks waiting for resources to queue on the Blockedlist. The fIrst 

element on the Blockedlist, called the Head, is the task that has been waiting the longest for 

resources. It is checked fIrst for possibility of execution. If it cannot execute, only tasks which 

do not require any of resources needed by the Head can execute. Thus, the Head will only be 

blocked from executing while the already scheduled tasks are still running, and will be allowed 

to execute as soon as they complete. It is important to note that when a task is scheduled to 

execute, its resources are automatically placed on the Dynamic Resource List, and these 

resources are deallocated immediately upon completion. Also, a task only moves onto the list of 

completed tasks when it successfully terminates. If a task returns with an error, recovery 

mechanisms must be invoked before further steps can execute which are data dependent upon 

this task. 

F. Error Recovery 

The design of the Supervisor provides two systematic checks for errors that may occur 

during the execution of a Task Plan. First, when a Specialist is unable to complete a1ask that it 
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has been issued by the Scheduler, the Specialist returns an error code which specifies the type 

of problem that it encountered during execution. Within the Supervisor there exists a set of error 

recovery routines for each Specialist which provide experimentally determined mechanisms for 

correcting an unexpected event based upon the error code received. The second check for 

execution errors occurs when a transformation task completes and an objects state must change 

from Unvalidated to either Valid or Invalid. This determination is made by using sensors 

available in the workstation to decide if transformed objects are at their desired locations and 

possess necessary features. 

Depending on the type of error encountered, different types of recoveries are attempted to 

correct the situation. One routine simply reexecutes the task in error, to try to accomplish the 

task again. Other routines reexecute the same Specialist, but provide different parameters. A 

third set of errQr recovery routines may need several Specialists to execute. In difficult cases, 

the Task Planner is invoked to replan execution. When new tasks are required for error 

recovery, they are assigned a very high scheduling priority by being put on the Head of the 

Blockedlist. All tasks that were data dependent upon the error causing task are now made data 

dependent upon the last step of this error recovery routine. 

G. I nterprocess Communication 

Since the Supervisor and Specialists are running concurrently in an on-line multiprocessing 

environment and communication is essential to the functioning of the hierarchy, a protocol was 

developed to allow high-speed data flow between the two levels. This protocol and associated 

communication mechanisms is housed in a functional block called the Communication Center. 

The Communications Center is a separate running process in the multiprocessing system. 

Upon startup of the Supervisor, the Communicatons Center is also created and a bidirectional 

data path is established between the two. When an instance of a Specialist is created, it receives 

a bidirectional data path with the Communications Center as well. Each direction of the 

bidirectional path is in fact a queue which allows data to be held on it until it is required by the 

receiving process. By using a queue as the data line construction, one does not have to worry 

about losing data due to improper handshaking, since the data will remain on the line until read. 

To allow for efficient, high-speed communications, the Communicatons Center was 

designed to be interrupt-driven. The Communicatons Center can handle interrupts from either 

the Supervisor or from any of the Specialists. Supervisor interrupts are required to start the 

execution of a Specialist, write to a Specialist, or to close a Specialist upon completion. When 

the Communicatons Center receives an interrupt from the Supervisor, it enters a service routine 
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which receives the operation to be perfonned (open, read, write, or close) and the Specialist 

number to perfonn it on. 

When a Specialist has data to transfer to the Supervisor, it issues an interrupt to the 

Communications Center. Since the Communicatons Center is constantly I/O-multiplexing the 

Specialists for interrupts, it jumps into an interrupt service routine as soon as one is 

encountered. The Communicatons Center then receives the data from the interrupting Specialist. 

When this data transfer is completed, the Communicatons Center interrupts the Supervisor and 

sends the data which is now prefixed with bytes identifying the Specialist that it originally came 

from. While this data transfer is taking place, interrupts from other Specialists are placed on a 

signal stack to be serviced after completion of this critical section. 

V. ONE EXPERIMENTAL IMPLEMENTATION 

The Assembly System Supervisor and four Specialists were implemented on a V AX 11nSO 

with the Unix 4.3bsd operating system under the RAL Hierarchical Control System. At the time 

of this implementation, the Task Planner and Assembly Planner were not fully designed, so a 

simple task plan was developed as input to the Supervisor. Also, the environment and object 

databases had not been created. However, for the assembly task at hand, it was possible to 

maintain an environmental model within the Supervisor. 

A. Language Choices 

Since Unix promotes inter-language communication, the different functions of the 

Supervisor were each written in the language best suited for their particular application. The 

languages chosen were OPSS, LISP, and C. 

OPSS is a forward chaining expert system shell [Brownstein et al., 1966; Forgy, 1981] 

capable of storing objects and their attributes, a feature which is essential for the current 

implementation of the Supervisor. Also, OPSS under Unix permits event-driven data 

modifications, so the attributes of stored object entries can be changed dynamically by other 

processes on the system. This aspect fits well into the interrupt driven design that has been 

discussed above. Further, OPSS is rule-driven, and thereby allows the user to encode 

experimentally detennined results to be used in error recovery situations. Learning simply 

requires the addition of new rules to the rule base. 

Since OPSS is a declarative language, it does not provide the standard algorithmic structure 

that is required to easily implement the entire Supervisor structure. LISP [Winston, 1981] was 

selected to encode these algorithms for two reasons. First, many of the data structures used are 
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list-based. Second, OPS5 easily communicates with LISP under Unix. Therefore, the Resource 

Manager, Task Scheduler, and Concurrency Detector were written in this language. 

An important feature of the Supervisor design is the ability to execute tasks in parallel in a 

multiprocessing environment. The C language [Kernighan and Ritchie, 1978] was selected as 

the best language to achieve the high speed message passing necessary for interprocess 

communication. Unix 4.3bsd is written in C, and contains a host of routines which promote 

interprocess communication through message pipelines. Interrupt structures are also defmed 

and available between executing processes. Therefore, the Communications Center was written 

in C. 

B. Workstation Environment and Task Description 

The workstation consisted of the following devices: 

1. A PUMA 600 robot under cartesian control. 

2. A pneumatically servoed force sensing gripper. The gripper is equipped with 
proximity sensors which reliably report the distance (up to 5 cm) of an object with 
known reflectivity. It is also equipped with a cross-ftre sensor between the ftngers 
and an overload sensor in the wrist. 

3. A large work table supporting the following three pieces. 

4. A large card rack which contained PC cards for picking. 

5. A small card cage mounted on a 4 degree-of-freedom force detecting platform sensor 
in which PC cards were inserted. 

6. A reflective metallic plate for Z calibration of the table plane. 

The assembly task consisted of the following steps performed by the arm: 

1. Calibrate the robot to the Z plane of the table by use of gripper-based proximity sensors. 

2. Locate the large card rack using the proximity sensors. 

Note: The location of the card rack could be varied by 30 cm in the X and Y 
directions, and the orientation variable by ± 15 degrees. 

3. Locate the card in the cage and grasp the card with sufftcient force for retrieval. 

4. Move Card to small card cage. 

5. Fix the orientation of card cage using proximity sensors. 

6. Insert card into small card cage and release when a given force is detected by the 
platform sensor. 
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C. Specialist Descriptions 

To llccomplish these tasks, a set of on-line Specialists was designed. These Specialists are: 

CALZ 

PICK 

employs the proximity sensors to detennine the table nonnal vector and 
establishes a frame of reference in which the table is the Z boundary plane. 

detects the orientation of the card rack and aligns the gripper perpendicular. 
It fmds the left or right edge of the rack and derives the center point, reaches 
into the rack a known distance, descends until the cross fire sensor is 
triggered, grasps the card with given force and then ascends to fixed height 
above rack. 

GMOTION moves the arm along a linear trajectory between two set points. 

PLACE employs similar techniques as PICK to determine location of the cage. It 
moves the arm to a set position relative to the cage and descends until a 
given force is detected by the platfonn sensor. 

I I I 

I I I I 
, r , • 
r , I , 

I I , • 
, , , I 

Supply 
Cage A 

Calibration 
Site 

I I 

I I 
I I 
I I 
I I 
I I 

Target 
Cage B 

(on 4 OoF Platform 
Frr Sensor) 

Figure 4. Experimental robotic workstation for Pick/lnsert task. 

D. Analysis of Experiment 

The Supervisor was successfully able to execute the pick/insert assembly task described 

above. The Supervisor was able to keep a record of object locations and features in the 

workspace, but only minimal verification was available due to the absence of a vision system. 

The Resource Manager tracked resources and the Task Scheduler, under the longest-waiting­

time-next algorithm, began Specialist execution in the desired order. 
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Further, a set of error recovery routines were encoded in the Supervisor which allowed the 

location of the large card rack and small cage to be varied. If the proximity sensors on the 

gripper could not find an object, the task was reattempted with a new gripper orientation, 

scanning these sensors along a different trajectory. 

Since these was no inherent parallelism in this experiment, the concurrency graph was 

linear, and the tasks executed sequentially. 

E. Supervisor Transportability: Another Experiment 

As part of a cooperative research effort between the Robotics and Automation Laboratories 

and the Institut de Cibemetica, the Supervisor, Specialists, and some associated hardware were 

transported to the Institut de Cibemetica for further testing and demonstration [Moed, 1987]. 

The Supervisor software was modified to function in a V AXNMS environment. Although 

these modifications were quite severe, the theoretical architecture of the Supervisor was not 

altered, and still functioned properly. 

Equipment available at the Institut de Cibemetica allowed the addition of another Specialist 

to the Assembly System. This Specialist performed 2D visual object identification from a 

camera overlooking the work cell. This Specialist provided the position and orientation of the 

large card rack and the small card cage in a similar pick/insert experiment. With this added 

information, the location of these objects could vary greatly without affecting task completion. 

Experiments performed in the new environment demonstrated that the Supervisor still 

managed the execution of Specialists according to design. The Concurrency Detector was 

tested, since the VISION and GMOTION Specialists could run simultaneously. Unfortunately, 

due to equipment failure, Specialists requiring the Proximity Sensors could not be run. 

However, the success of the Supervisor in a new environment is an important indicator of the 

robustness of the initial design. 

VI. CONCLUSIONS 

A robotic assembly system has been presented which allows both the automatic 

programming of the robot and the successful execution of the assembly task, despite 

uncertainties in the task environment. To achieve this system, the Principle of Least 

Commitment is applied so that the successive stages from planning to execution become 

progressively more specific. The system is partitioned into off-line and on-line modules. The 

off-line modules comprise an automatic programming and planning system. The off-line 

modules are the assembly planner, the task planner, and off-line specialists. The assembly 
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planner is responsible for determining what has to be done. The task planner maps the 

operations to a robotic environment and describes how the task is to be completed. The off-line 

specialists assist in planning the specific tasks. 

The on-line modules are the supervisor, on-line specialists, and intelligent device interfaces. 

The supervisor manages the execution of the tasks in the workstation, and decides when the 

operations will execute. The on-line specialists control the physical manipulators, sensors and 

peripherals and execute the desired task. Since there can be a variety of unique devices in an 

workstation which can perform the same functions but require different programming 

languages, the intelligent device interfaces translate generic specialist commands into device­

specific instructions. 

The design, implementation, and testing of the Supervisor as part of an integrated 

hierarchical' planning and execution knowledge-based robot workstation is presented in some 

detail. The Supervisor is responsible for on-line management of an assembly process. Using 

constructs developed in Operating Systems, the functionality of the Supervisor is separated into 

five main sections: Resource management; Concurrency Detection; Task Scheduling; Error 

recovery; and Interprocess Communication. The design presented here contains the necessary 

intelligence to recover from unexpected deviations in the workstation environment and provides 

one look into on-line robot task management. An experiment performed under Supervisor 

control demonstrates that the design provides a structural base for a robust on-line robotic 

workstation execution. 
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ABSTRACT 

A vision guided robot for assembly is defined to be a robot/vision 
system that acquires robotic destination poses (location and orientation) 
by visual means so that the robot's end-effector can be positioned at the 
desired poses. In this paper, the robot/vision system consists of a 
stereo-pair of CCD array cameras mounted to the end-effector of a six-axis 
revolute robot arm. Automated calibration methodologies for local and 
global work volumes of the robot/vision system are described, including a 
perspective error transform calibration method for cameras. Multiple 
component assembly and robotic fastening has been demonstrated with the 
developed vision guided robot. 

1. Introduction 

For most v~s~on guided robots, the vision modules are mounted remotely 
away from the robot, either on the ceiling or the floor, with the robot's 
work envelope within the field of view of the vision modules (see Figure 
1) . Recent advances in the miniaturization of cameras [16] and other 
optical systems has made the mounting of vision modules to the robot arm a 
practical strategy for robot guidance. This paper addresses calibration 
issues associated with mounting a stereo pair of CCD array cameras onto 
the end-effector of a six-axis revolute robot arm [8] as shown in Figure 
2. The advantages and disadvantages of a robot-mounted vision system are 
discussed in the next section. Since a key to a useful robot/vision 
system lies in its accuracy, calibration of the robot/vision system is 
presented in detail in section 3. In section 4, an assembly strategy 
based upon the geometric relationships between various elements of the 
robot/vision system and its environment is outlined. A description of an 
assembly application using the robot/vision system is presented in section 
5. Section 6 describes the use of the robot/vision system to infer global 
errors of the robot and the cameras. Section 7 discusses another method of 
calibrating the cameras. 

2. Robot-Mounted Vision System 

Robots guided by remotely mounted stereo cameras have been previously 
demonstrated [9]. This method of robotic guidance relies on having the 
robot's work envelope lie within the field of view of the stereo vision 
system. Most industrial robot arms have rather large work envelopes, 
consisting roughly of a hemisphere of 1.5 m radius. The planar resolution 
of atypical CCD array camera, even with sub-pixel calculations, is only 
on the order of one part in a thousand. Hence, for a robot arm of one and 
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a half meter radius, the planar resolution of a remotely mounted camera 
that views the entire work envelope is only about 3 mm, whereas the 
accuracy requirement for many assembly tasks in the automotive industry is 
on the order of 1.5 mm. This planar resolution limits the depth resolution 
of a pair of stereo cameras, the accuracy of which is a function of the 
separation of the stereo baseline and of the angle of convergence of the 
cameras. A common approach for increasing the resolution of such vision 
systems is to use multiple stereo camera pairs with overlapping fields of 
view. 

An alternative approach for Vl.Sl.on guided robots is to mount one or 
more cameras to the end-effector of the robot arm, thereby allowing the 
vision system to be used throughout the working envelope of the robot arm. 
Hence, the complexity of the system is reduced by having fewer cameras. 
Moreover, since this strategy allows for image acquisition throughout the 
work envelope of the robot arm, the field of view of the stereo camera 
system can be restricted, thereby increasing the resolution of the vision 
system. Another advantage of a robot mounted vision system is that, due 
to the mobility of the robot arm, the vision system can be moved to view 
around obstructions. 

3. Robot/Vision System Calibration 

With the cameras mounted to the end-effector of the robot arm, a 
general calibration of the robot/vision system consists of two steps: (1) 
determining camera model parameters with respect to a reference coordinate 
frame, and (2) determining a geometric relationship between the reference 
and robot end-effector coordinate frames. The result of the calibration 
procedure is a pair of camera calibration matrices and associated distortion 
correction terms, calculated relative to the end-effector coordinate 
frame. By using the camera calibration matrices in conjunction with the 
kinematic model of the robot arm, three dimensional coordinates with 
respect to the robot's base frame can be determined by the stereo vision 
system. 

3.1 Camera Calibration Relative to Reference Frame 

The calibration of a single camera is the estimation of camera model 
parameters that are used for the mapping of points expressed relative to a 
world coordinate frame to the vision system's pixel coordinates. Assuming 
a pin-hole model and the laws of Gaussian optics for the camera, the 
mapping can be shown to be a linear function of the world frame coordinates 
and is represented by a 3x4 calibration matrix in homogeneous coordinates 
[1,3,6]. This calibration matrix can be decomposed into the product of an 
internal and an external transformation matrix [5]. The external matrix 
is a 4x4 homogeneous transformation matrix relating the coordinate frame 
of the camera's center to an external reference coordinate frame. The 
internal matrix, which is also expressed in homogeneous coordinates as a 
3x4 matrix, is a function of the camera's focal length, scaling parameters 
and coordinates of the image element's origin. Due to the homogeneous 
formulation, there are eleven unique elements in the calibration matrix. 
Thus, to determine the elements of the calibration matrix, it is necessary 
to measure the pixel coordinates of a minimum of 6 non-coplanar points 
who?e coordinates are known with respect to the reference coordinate frame 
[1,14,15]. A linear least-squares procedure can be formulated to calculate 
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the elements of the calibration matrix. In practice, a precisely machined 
calibration plate mounted orthogonally to a translation stage is used to 
establish the reference frame and the coordinates of known points. 

The accuracy of the pin-hole camera model can be improved by accounting 
for geometric aberrations that are due to departures from the ideal 
condi tions of Gaussian optics. The maj or geometric aberration that can 
affect the position of an image is radial distortion. The lowest order 
radial distortion component is a cubic function of the radial distance of 
the image from the optical axis [2]. For the CCD array cameras used in 
this study, the distortion correction to the camera model results in 
increasing the accuracy of calibration by approximately 50 percent over 
the nominal pin-hole camera model. Higher order polynomial corrections to 
radial distortion and polynomial corrections for tangential distortion 
were found to have a negligible effect on the accuracy of calibration. 
Similarly, the effects of image plane tilt with respect to the optical 
axis were also found to be negligible for small angles. With this 
calibration, an accuracy of better than 0.1 mm is achieved for the stereo 
vision system in a field of view of approximately a 125 mm cube. 

3.2 Camera Calibration Relative to End-Effector Frame 

In order to express the coordinates of imaged points relative to the 
robot's base frame, the camera calibration matrices are transformed to 
relate the camera- centered coordinate frames to the robot IS end- effector 
frame. This transformation is expressed as a 4x4 homogeneous transformation 
matrix and is denoted by T~. The relationship can be established by 
relating the coordinates of a minimum of four non-coplanar known points 
measured relative to these two coordinate frames. These data points can be 
obtained by manually translating the robot arm to touch a set of known 
points on the calibration block with a probe attached to the end-effector. 
The coordinates of the points relative to the end-effector frame are 
determined by the robot controller, and the coordinates relative to the 
reference frame are known a priori from the construction of the calibration 
block. This method is straightforward, but time consuming and may yield 
inconsistent results. 

To determine this relationship between the end-effector and external 
reference frames automatically, a procedure using rotational and transla­
tional motion of the robot has been proposed [13]. The methodology to be 
described is based only on translational motions and uses a machined 
probe attached to the robot end-effector in the field of view of the 
vision system. 

Let E denote the end-effector frame and r be the external reference 
frame to which the cameras are calibrated. Then the relation between E 
and r is expressed as T~. Let 

[: : ] and 

By determining Rand D, one can solve for T~. 
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Note that when the robot arm is moved from EO to El, there is a 
corresponding motion of rO to rl because the vision system is mounted on 
the robot arm (see Figure 3). The relations between all these reference 
frames are given as 

Tr1 rO TE r TE1 EO Tr E and TEO rO TE r TE 1 r1 

If P is a point known with respect to rO and Pr1 is obtained from vision 
cameras, then 

PrO TE r TE1 EO T~' Pr 1 (1) 

Let 

~ = I a~d D~ is known if the robot is moved by pure translations. So 
equation (1) becomes 

R * D~ (2) 

R can then be solved by using the least squares method with at least 3 
translational moves. 

To solve for D in T~, use a machined probe with tip P so that PE 0 is 
known. Determine PrO with vision cameras. Then PEO T~g PrO would 
give 

D (3) 

To summarize, the computation steps for T~ are 

1) Determine stereo vision calibration matrices relative to base 
reference frame r. 

2) Make n (~ 3) programmed translational moves and measure Pri , i -
1, ... ,n. 

3) Determine rotational part R by equation (2). 
4) Pick up probe and determine probe tip by stereo vision cameras. 
5) Determine translational part D by equation (3). 

6) Form 

3.3 Calibration Errors and Compensation 

Numerous factors, e.g. incomplete camera model, noisy data, and other 
random or systematic errors, limit the overall applicability of the 
robot/vision system calibration as described above. In the inference of 
the transformation matrix T~, a variety of measures are taken to minimize 
the effects of these errors. First, the motion of the robot-arm is 
programmed so that the effects of gear backlash are eliminated. This is 
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accomplished by actuating each joint of the robot in a fixed direction 
when approaching the desired pose. Another possible source of error is 
the relation of the probe center with respect to the end-effector frame. 
In fact, the components of the probe's location that are orthogonal to the 
sixth rotational axis of the robot arm are difficult to measure accurately. 
These components can be determined by viewing a point fixed in space while 
rotating the robot's sixth axis. This has the effect of calculating a 
correction to the matrix T~. However, the resulting camera calibration 
matrices may still be related to a reference coordinate frame that is not 
precisely aligned with the end-effector coordinate frame. 

Of even greater significance are the geometric and non-geometric robot 
errors which result in inaccurate estimates of robot end-effector poses. 
If real-time visual feedback control is not a feasible means of robot 
guidance, then some corrective strategy must be applied to use the vision 
system for robot guidance in an open loop mode. Local and global 
approaches for correcting these errors will be briefly discussed in the 
following sections. 

Others [4] have used a remotely mounted V1S10n system to increase the 
prec1s10n of a robot arm in a local volume defined by the field of view of 
the vision system. Correction parameters based on 6 dimensional cartesian 
coordinates are inferred from visual data and robot poses. This 
methodology should be directly applicable to a robot mounted vision 
system and can be extended to a larger work envelope by using numerous 
viewing points with associated local calibration volumes. 

4. Assembly Strategy with Vision Guided Robot 

There are five essential elements in vision guided robots for automated 
assembly. They are the workpiece, the parts or components to be assembled 
into the workpiece, the robot and its controller, the calibrated vision 
system and the gripper. Assume that the workpiece contains holes into 
which components are assembled. The fundamental goals of the robot/vision 
system are to determine the robot poses for the assembly operations of 
picking, inserting and fastening of the components into the workpiece, to 
execute the appropriate motion between the poses, and to perform the 
assembly operations. Geometric relationships and constraints associated 
with these five elements are discussed leading to a strategy for using 
vision guided robots in automated assembly. The discussion is restricted 
to a robot/vision system which performs the insertion of a part P into a 
hole H on the workpiece based on 3D visual data. The workpiece contains a 
pre-selected feature F which the vision system images so that the pose of 
the hole can be determined. 

4.1 Use of RobotfVision System 

The first geometric relationship is that of the V1S10n system and the 
robot. As described in the previous section, let C~ and C~ be the camera 
calibration matrices and T~ be the transformation between the robot end­
effector and the reference frame to which the vision system is calibrated. 
Then as depicted in Figure 4, postmultiplying the camera calibration 
matrices by the transformation matrix T~ expresses the camera calibration 
matrices with respect to the end-effector coordinate frame. -- Thi:s 
relationship allows the vision system to be used for 3D vision guidance. 
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In a typical application, these 3D coordinates are transformed to the 
robot base frame through the kinematic model. 

4.2' Fixed Viewing Application 

Express the viewing pose and the target pose of the robot arm as 
transformation matrices v T8 and t T8, respectively. Let the geometric 
relationships between the imaging feature F with respect to the end­
effector frame be denoted by T~, between the hole H with respect to the 
feature F by T~, and between the part P with respect to the end-effector 
coordinate frame by T~. Both T~ and T~ may be derived from CAD data bases 
for the workpiece, part and the gripper. T~ is obtained from visual data 
while v T8 ' from the robot kinematic model. Combining these 
transformations, the target robot pose is given by 

This formulation assumes ideal conditions which, in practice, are 
usually violated. First, the poses described by the kinematic models of 
the robot arm may not accurately reflect the true robot poses. Second, 
the vision system may be calibrated relative to a reference coordinate 
frame that is slightly offset in location and orientation from the end­
effector frame. Third, the geometric relationship of the gripper with 
respect to the end-effector frame may not be precisely known since the 
physical location of the end-effector frame is not measurable. Note that 
the various geometric errors are constant with the exception of those of 
the robot arm, which are functions of the joint variables. However, if 
the viewing position is fixed for a particular assembly task, then the 
error in the robot pose becomes a constant for that viewing pose. Thus, 
under this constraint, all the errors on the RHS of the above equation are 
constant. The error in the target robot pose, on the other hand, is not 
constant, since the target pose is a function of the location and 
orientation of the workpiece. However, it is nevertheless reasonable to 
approximate this error as a constant since the angular ranges of the six 
j oint axes do not vary considerably under the local volume constraint 
imposed by fixing the imaging point. For small errors, the correct target 
robot pose can be approximated as the product of the nominal target robot 
pose with an error transformation: 

where I is a 4x4 identity matrix and toT is an error transformation matrix 
[9), the elements of which are linear functions of all the above errors. 
The local calibration problem is then to determine the six components of 
toT. The methodology for increasing robot precision in a local volume [4) 
is easily revised for determining these error terms. 

If, in the above equation, T~ and (T~)-l are not known a priori, then 
the local calibration problem reduces to determining the 12 components of 
t (-ry) given by: 

t (T~) T~ • (T~) - 1 • ( I + t oT ) 

For either case, the unknown correction parameters can be inferred by 
iteratively relating taught robot poses to the viewing pose and -to the 
pose of the imaging feature as determined.by the vision system. 
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5. Concept Demonstration of Instrument Panel Assembly 

An accuracy of 1.5 mm is achieved with the above local calibration 
methodology, i.e. by fixing the imaging point of the robot/vision system. 
With such an accuracy and a local volume constraint of a 125 mm cube, 
vision guided robotic assembly of components into an automotive instrument 
panel (IP) is demonstrated. The robot-mounted stereo camera system is 
used in the open loop feedback scheme in which the pose of a randomly 
positioned IP is visually determined and communicated to the robot only 
once. The IP can be tilted or rotated by ±15° and can be positioned so 
that the imaging features are contained in the local volume. After 
receiving the pose information, the robot moves to pre-taught positions to 
pick up end-effectors and components and performs the assembly tasks. 
There are four components, clock, heater control unit, radio and 
speedometer cluster. Because of the variation in size and weight of the 
four components, a parallel jaw gripper and a suction cup end-effector are 
used. Each end-effector is capable of picking up two components, thus 
demonstrating the concept of mUlti-purpose grippers. For a laboratory 
environment, the use of a finger exchange unit, rather than a tool 
exchanger for the robot, is more adaptive and flexible. Since one of the 
end-effectors requires suction, the concept of vacuum exchange has also 
been shown. The components are presented in such a way that the concepts 
of just-in-time delivery and part kitting are assumed. 

With two changes of fingers, the picking and insertion of the four 
components are accomplished in 65 seconds. To achieve such a cycle time, 
image processing has to performed while the robot is moving to pick up the 
first set of fingers and component. This is accomplished by storing the 
images of both cameras in buffers. By using three pre-painted dots or 
pre-punched holes as the imaging feature, the image processing and stereo 
correspondence time is less than 5 seconds. The pose information is 
transmitted to the robot before it has even picked up the first set of 
fingers. In comparison, a natural feature, such as the boundary of an air 
vent grill, requires a processing time that is 5 times longer due to the 
fact that the air vent can be in different configurations. 

After inserting the components into the IP, the robot switches fingers 
to pick up a fastening tool. The above open loop feedback approach is not 
sufficient since (1) the tolerance between the screw and the fastening 
hole is less than 1.5 mm, (2) the screw in the fastening tool is not held 
rigidly and wiggles while the robot moves the fastening tool into position, 
and (3) the fastening tool may not be held rigidly with respect to the 
robot wrist since the force of the weight of the fastening tool is 
greater than the capability of the finger exchange unit. 

To perform robotic fastening, an error correction to the open loop 
control is needed. After the robot moves to a position above the screw 
hole, the vision system is used again to determine the relative position 
between the screw and hole. This use of the vision system is feasible 
since both the screw and the hole are within the field of view of both 
cameras. A priori information about the location and orientation of the 
fastening tool tip is also required. 
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6. Global Calibration of Robot/Yision System 

As indicated in section 4, one of dominant errors of the robot/vision 
system are the geometric and non-geometric errors of the robot. A global 
calibration procedure for the robot/vision system has been developed by 
using the vision system on the robot end-effector [11]. The calibration 
produces a single set of parameters which can be used throughout the 
entire work envelope of the robot arm. The methodology determines the 
geometric errors of the robot/vision system and the effects of joint 
compliance and gear backlash. The primary constraint employed by the 
methodology is that the coordinates of a single point in space, as 
measured by the stereo vision system, must not change with different robot 
j oint angle configurations. A threefold improvement in the positioning 
accuracy of a robot arm can be obtained with this methodology. 

6.1 Geometric Errors of the Robot 

Let Ai~l be the 4X4 homogeneous transformation matrix representing the 
pose of the robot's ith link coordinate frame relative to (i-l)th link. 
The differential errors of the link and j oint parameters give rise to a 
corrected relationship 

c Ai ~ 1 Ai ~ 1 * ( I + SAi ~ 1 

For N-axis robot, the corrected representation of the end-effector frame 
to the robot base fram is given by 

N 

1T T~ ( I + .sT~ ) (4) 

i=l 

by ignoring high order terms. 

6.2 Non-geometric Robot Errors 

In the robot that is being used, the most significant non-geometric 
errors are gear backlash and compliance. Backlash is modeled as 

f>9j Bii sign(9i - (9 i )previous) 

For backlash, induced by the third motor, of joint 2, which is coupled to 
joint 3 with a rubberized timing belt, the model is 

The balanced design of the links eliminated the need to compensate for 
j oint compliance due to the weight of the links. For compliance due to 
the weight of the end-effector, it is modeled as a linear function of the 
cross-product of a vector parallel to the joint axis with a vector 
relating the mass position to the joint axis. 

6.3 Algebriac Formulation of Geometric Relationships 

From section 4. we have for camera J. C~ C~ T~ where r is the 
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reference frame to which the vision system is calibrated. Because of the 
errors in the robot, the corrected camera calibration matrix should be 

C~ * ( I + ST~ ) 

Let 6p denote the homogeneous coordinates of a target relative to the end­
effector frame and JU, the homogeneous pixel coordinates of camera J. Then 

Ju C~ * 11~ * 6p 

Let ~P l1T~ * 6p (5) 

Then ~P is the target coordinates determined from the uncorrected camera 
calibration matrices, i. e. the measured target coordinates. The target 
point relative to the robot base is given by op = cIt * 6p where cT8 is 
defined by equation (4). 

Combining equations (4) and (5), one obtains 

Op T8 * I + ST8 ) * ( l1T~ ) - 1 * ~P (6) 

Since ( l1T~ ) - 1 I - ST~ ) , equation (6) becomes 

op 
T8 * I + ST8 - ST~ ) * ~P (7) 

if high order terms are ignored. 

The 43 unknowns in equation (7) include 24 kinematic parameters, 10 
non- geometric parameters, 6 camera origin errors and 3 parameters for 
target location relative to the base frame. Some of these parameters are 
redundant and can be combined, resulting in a vector equation of only 35 
unknowns. 

6.4 Data Acquisition and Results 

A series of views of the same target from many joint angle 
configurations is used to solve for the 35 unknowns. The choice of 
target, its position, and the widely varying joint angle robot poses are 
primary considerations in the data collection process. The target is a 
small nylon ball bearing illuminated by a laser. It is located above the 
robot where it can be viewed from different joint angle poses. These 
poses are automatically generated based on concentrated spheres centered 
at the target point and which radii are within the v1s10nsystem 
calibration range. The poses are chosen to provide a uniform distribution 
of j oint angles for the first five axes. Data collected consists of 
recorded j oint angles from the robot and centroid calculation of the 
target from the vision system. Mathematical morphology [7] is used for 
image processing. From this data the 35 parameter corrections are inferred. 

7. Linear Perspective Camera Error Model 

It was clear from the above work that a good camera calibration is 
essential to an accurate robot/vision system. Based on the differenti~l 
error' model technique, a linear perspective error model for camera 
calibration is formulated [12]. Recall that 
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[INT] 

I o :] and [EXT] [: :J 
o 

where R = f(rx,ry,rz ) and T = (tx,ty,tz)t. Express the difference 
between measured pixel and distored pixel coordinates as 

and 

where ud and vd are cubic functions of (G, (~ - Uo)/k1 , (v - vo)/k2 ) 
with (~,vp) being the ideal pixel coordinates. The above differences can 
be approximated by first order corrections as 

DUd DUd DUd DUd 
lmd - t-k1 + ••• + -- t-tz + -- t-rz + -- t-G 

ok1 dtz orz oG 

where 

(Jud 
Qo * (~ - Uo )/kl 

Dk1 

with Qo = I + ( G * ( (up-uo)/k1 )2 + ( (vp -yo )/k2 )2 ) 

DUd DUd ()ud 
0 and I 

CJk2 DVo DUo 

Similar equations can be obtained for t-vd' 

To obtain partials with respect to [EXT], one should consider 

d[EXT] [EXT] S[EXT] 

where 

0 -Rz 1\ Tx 

Rz 0 -Rx Ty 
S[EXT] 

-1\ Rx 0 Tz 

0 0 0 0 

with (Rx,1\,Rz,Tx,Ty,Tz) = f(rx,ry,rz,tx,ty,tz)' Since initial estimates 
of all camera parameters are known, one can treat (R, T) as the unknown 
co~rections to [EXT]. This change of coordinates from (r, t) t<l (R, T) 
provide an easy representation of d[EXT]. Then 
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3Ud oUp ~-Uo ~-Uo a~ vp-vO oVp 
QO + * 2G + 2G 

3s j aS j k, k, 3S j k2 oSj 

where Sj f (Rx ,Ry ,Rz ' Tx ' Ty , Tz ) , 

are functions of (Cjj' ~, vp ' w), 

with Cjj being elements of the camera calibration matrix. 

An error model of 11 unknowns (~k, ,~k2'~Uo,~vo), ~G, (~Rx,~,~Rz)' and 
(~Tx,~Ty,~Tz)' in two equations with the partial derivatives as 
coefficients has been formulated. These 11 unknowns can be solved by a 
least squares method using n/2 imaged points to form n equations. 

To summarize, the steps to obtain a corrected camera model are 

1) compute camera calibration matrices without distortion, 
2) form matrices [INT] and [EXT], 
3) solve for the 11 unknowns, 
4) update [INT] and G by addtion, 
5 update [EXT] by using [EXT] = [EXT] ( I + S[EXT] ) and 

orthonormalize, 
6) recompute C = [INT] [EXT], and 
7) iterate. 

The benefits of the perspective error transform method are that 
a single camera accuracy of 1 part in 6750 is achived, 
least squares is the sole optimization technique, 
all parameters are estimated at the same time which allows easy 
inclusion of abberations due to departure from the ideal pin hole 
model, and 
no prior camera knowledge is required where other methods required 
knowledge about uo' vo' k2' or spacings between vertical image 
elements of the CCD array. 

8. Summary 

A robot-mounted stereo camera system has been developed for 3D visual 
guidance of the robot arm. Camera and robot calibration methods have been 
developed. Local calibration and local volume constraints have been used 
in the demonstration of vision guided robotic assembly of components into 
an instrument panel. Local calibration accuracy is about 1.5 mm in a 125 
mm cube while the Vl.Sl.on system accuracy is about 0.1 mm. Also 
demonstrated are the two open loop visual control schemes for robotic 
guidance. To further increase the accuracy of the system, a global 
robot/vision calibration method has been developed using the stereo 
cameras mounted on the end-effector. Realizing the importance of the 
accuracy of the vision system, a linear perspective camera error model has 
also been developed. 
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Figure 2. Vision-Guided Robots tor 
Automated Assembly 
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Abstract 

Although neural networks can ultimately be used for many applications, their suitability for a 
specific application depends on the acquisition/representation, performance vs. training data, response 
time, classification accuracy, fault tolerance, generality, adaptability, computational efficiency, size and 
power requirement. In order to deal with such a multiple-spectrum consideration, there is a need of 
unified examination of the theoretical foundations of neural network modeling. This can lead to more 
effective simulation and implementation tools. For this purpose, the paper proposes a unified modeling 
formulation for a wide variety of artificial neural networks (ANNs): single layer feedback networks, 
competitive learning networks, multilayer feed-forward networks, as well as some probabilistic models. 
The existing connectionist neural networks are parameterized by nonlinear activation function, weight 
measure function, weight updating formula, back-propagation, and iteration index (for retrieving phase) 
and recursion index (for learning phase). Based on the formulation, new models may be derived and one 
such example is discussed in the paper. The formulation also leads to a basic structure for a universal 
simulation tool and neurocomputer architecture. 
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by the Innovative Science and Technology Office of the Strategic Defense Initiative Organization, administered 
through the Office of Naval Research under Contract No. N00014-85-K-0469 and N00014-85-K-0599. 
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1 Characterizations of the Generic Iterative ANN Model 

A basic ANN model consists of a large number of neurons, linked to each other with connection 
weights. Each, say i-th, neural processing unit (PU) has an activation value ai. This value 
(either discrete or continuous) is propagated through a network of unidirectional connections 
to other PUs in the network. Associated with each connection, there is a synaptic weight 
denoted as Wij which indicates the effect the j-th PU has on the i-th PU (see Figure l(a)). In 
order to provide some biological fidelity, all of the existing artificial neural networks (ANN s) 
adopt an information storage/retrieval process which involves altering the connectivity pattern 
of synapses, and/or by modifying synaptic weights associated with the connections [3]. From 
algorithmic point of view, there are two separate phases of ANN processing: retrieving phase 
and learning phase. 

1.1 Retrieving Phase of the Generic Model 

Suppose that the connectivity pattern and synaptic weights of a neural network are known 
and fixed. In the retrieving phase, responding to the inputs (test patterns), the activation 
values of all neurons are iteratively updated based on the system dynamics until they reach 
the L-iterations and produce the responding outputs. The system dynamics in the retrieving 
phase of a generic iterative model for ANNs can be written as: 

N, 

ui(l + 1) L wij(l + l)aj(l) (1) 
j=l 

ai(l + 1) J;(ui(l + 1), Bi(l + 1), ai(l)) (2) 

where 1 :::; i :::; Nt+! and 0 :::; I :::; L - 1. The initialization activation values are often denoted 
by ai, i.e., {ai(O) = ai}. The termination activation values are often denoted by f3i, i.e., 
{ai(L) = f3i}. 

There are two types of inputs are observed: the stimulus inputs {ai(O)} and the external 
inputs {Bi(l)}. If the stimulus inputs are used to represent the test/training patterns, then 
the external inputs are often used as non-modifiable thresholding elements (e.g., [13, 1]), or 
as modifiable parameters to control the bias (e.g., [33, 32, 29]). It is also possible that the 
external inputs are used to represent the test/training patterns [24, 28], then the stimulus 
inputs will be purely used as initialization purpose. The system dynamics in Eqs. 1 and 2 may 
be graphically represented by an L-level feed-forward neural network (with Nt neural units 
at l-th level) shown in Figure l(b), where one mathematical iteration is corresponding to one 
level of the network. 

Equation (1) defines the propagation rule. Each PU, say i-th neuron at (I + l)-th level, 
receives the weighted inputs from other PUs at l-th level to yield the net input ui(l + 1). 
Equation (2) defines the nonlinear activation function Ji(l + 1) which determines the new 
activation value ai(l + 1) as a function of the net input value ui(l + 1), the external input 
Bi(l + 1), and in some models, the previous activation value ai(l). 

Iteration Index I in the Retrieving Phase The iteration index I used in the generic 
iterative ANN model (see Eqs. 1 and 2) can be used to represent one of the three possible 
iterations: time, layer, or pattern. 

1. If I represents the time iteration, then the network is a single layer feedback network 
with each neuron being updated synchronously (in parallel) at each level. The resulting 
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Figure 1: (a) A basic ANN model with two operations: propagation rule, and nonlinear 
activation, where iteration index is not considered. (b) A generic iterative model (L-iterations) 
for ANNs, where Wij(l) and Nt may be homogeneous or heterogeneous with respect to t. 
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time-iterative generic network always has equal number of (N) neurons at each iteration, 
and constant synaptic weights {w;j} with respect to 1 [13, 24]. 

2. If I represents the layer, then the network is a spatially iterative network which usually 
has different number of neurons and different synaptic weights for different levels 1. The 
neuron layers in between the input and output layers are called hidden layers [32, 29]. 

3. In certain models, each iteration (level) is corresponding to one pattern input [28]. 

Nonlinear Activation Functions The nonlinear activation function Ii(l + 1) in Eq. 2 can 
be a deterministic function, winner-take-all mechanism, or a stochastic decision (for simpler 
notation, we will denote the position and iteration invariant activation function as f). There are 
three popular deterministic nonlinear activation functions for Eq. 2: thresholding, squashing, 
and sigmoid. Typical examples of I;(u;(l + 1),8;(1 + l),a;(I)) are show~ below: 

Thresholding: [33, 32, 13] 

I; = {c1 if ui(l + 1) > -8;(1 + 1) 
C2 if ui(l + 1) ::::; -8;(1 + 1) 

Squashing: [24] 

{

I\;I [u;(l + 1) + 8i(1 + l)][Cl - a;(l)]- 1\;2 a;(l) 
if u;(l + 1) > -8i 

Ii = 1\;1 [ui(l + 1) + 8;(l + l)][ai(l) - C2]- 1\;2 aiel) 
if ui(l + 1) ::::; -8i(l + 1) 

Sigmoid: [29] 
1 

1 + e-ui (I+1)-Oi(I+1) Ii = 

In some applications, winner-take-all type of nonlinear mechanism are adopted[17, 10, 30]: 

ao(l + 1) = {I ~f ui(l + 1) > Uk(l + 1) Vk =I i 
• 0 If else 

Note that the function is more general than Eq. 2, since it depends not only ui(l + 1) but also 
all other Uj(l + 1), Vj =I i. Nevertheless, this can be easily implemented by lateral inhibitions 
so that only the neuron receives largest input is activated. The typical stochastic decision rule 
may be represented as 

Pr(a;(l + 1)) = j;(Ui(l + 1), 8i(l + 1), ai(l)) 

where PrO represents the probability function [1, 28]. 

1.2 Learning Phase of the Generic ANN Model 

In the learning phase, the synaptic weights for all the connections are also iteratively updated. 
The weight updating problem, sometimes called credit assignment problem for network in 
Figure l(b), is to find the synaptic weights (sometimes also external inputs) which optimize 
certain predefined measure function E based on a set of input training patterns. The learning 
phase usually involves two steps: In the first step, the input training patterns are processed by 
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the network based on the retrieving phase equations and generate some actual responses. In 
the second step, the weights are updated according to the responses generated and the chosen 
learning rules. Recursive procedures are often adopted. A unified recursive weight updating 
formulation (learning rule) for the generic ANN model can be expressed as following: 

(m+1)( ) _ ( (m)() .. ( ) BE) wij 1 - 4i Wij I, TJ'J 1 , (m) 
BWij (1) 

(3) 

The new weight value wLm+l)(I) at (m + I)-th recursion can be determined by the current 

weight value wLm)(l), the updating rate parameter TJij(l), and most importantly the gradient 

f~ . The updating rate TJij(l) is introduced to regulate the rate of change of each weight 
ow' j (/) 

at each recursion, it can be a global constant or can be a locally-dependent variable. In the 
following sections, for simplicity, we shall use TJ to denote TJij(l) . 

Measure Function E as Training Criterion A criterion function E in Eq. 3 has to be 
selected first, then the weight training may be formulated as a problem of iterative optimization 
(maximization or minimization) of the function E. In order to provide more flexibility, the 
measure function can be a global function E, or a local function of I, i.e., E(l). When E is a 
global function, the training for weights at one level can affect that of other levels, since the 
optimization is over the weithts of all levels. When E is a local function, a hierarchical network 
can be established by cascading individually optimized iterations in Eq. 3 [30, 9, 23]. 

Recursion Index m in the Learning Phase To distinguish from the operations for the 
retrieving phase, we use a new recursion index m for the recursive weight updating formulation 
(see Eq. 3). The recursion index m may represent either a pattern index or a sweep index. 

1. When the network updates the synaptic weights after the presentation of each training 
pattern, then m represents the pattern recursion. 

2. When the network updates the synaptic weights only after all the P training patterns 
are presented, then m represents the sweep recursion. 

Examples of Updating Formulation The updating formulation function 4i in Eq. 3 may 
be in an additive form, multiplicative form, or others. The additive formulations lead to the 
gradient descent (for minimization) or gradient ascent (for maximization) approach: 

Wij(l) wij(l) + BE 
(4) ~ TJ-- or 

BWij( 1) 

wij(l) wij(l) -
BE 

(5) ~ TJ--
BWij(l) 

where ± is determined based on either the ma:dmization or minimization formulation. One 
popular example is the back propagation learning, an iterative gradient descent algorithm 
designed to minimize the mean squared error between the the desired target values and the 
actual output values [29]. 
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1.3 Useful Mechanisms for Weight Training 

Constant-Sum Constraints In some competitive learning applications the magnitude of 
w;j(l) are bounded. For example, 

NI_1 

L w~j(l) = c 
j=1 

or 
N I _ 1 

Wij(l) ;::: 0 and L w;j(l) = c 
j=1 

If the additive updating formulation is used, then updating step TJ should be carefully selected 
to satisfy the constraints. Note that the convergence is not always guaranteed. 

On the other hand, if {w;j(l)} are non-negative, Le., w;j(l) ;::: 0, and satisfy either of the 
following constraints, 

Nl+l Nl 

L wij(l) = 1 or L wij(l) = 1 
;=1 j=1 

then the iterative constraint optitnization problem leads to a multiplicative or additive/multiplicative 
formulations [5, 4, 6, 31]. 

W;j(l) TJ w;j(l) . 
BE 

(6) ¢= 
Bw;j(l) 

or 

Wij(l) 
BE 

(7) ¢= TJ [a Wij(l) + (1- a) wij(l) . OWij(l)] 

where E should be an arbitrary polynomial of {w;j(l)} with positive coefficients. 
Note that only proper choice of the updating step TJ can ensure that the new weights {Wij( I)} 

satisfy the constraints and also lead to convergence. One popular example is the Baum-Welch 
reestimation learning rule used in the hidden Markov models [22, 28], which iteratively choose 
the weights to maximize the likelihood of the training patterns. 

A possible extension of the constant-sum constraint is a weighted-sum constraint which 
may be exploited to shape the network so that it would highlight or depress certain properties. 

Back-Propagation of Corrective Signals In the multi-level ANN model, the direct gra­
dient updating of the weights in all the levels often incurs enormous computational burden. 
To alleviate this burden, back-propagation of corrective signals based on chain rule derivation 
may prove computationally very cost-effective. Note that the gradient term can be decomposed 
into: 

oE oai(l) 
oai(l) BWij(l) 

BE 
= BWij{l) 

t5.( I) Bai( I) 
, BWij{l) 

(8) 

where the backward propagated corrective signal t5i(l) is defined to be a~;fl~. The backward 
propagated corrective signal can be computed directly by approximation if t e nonlinear acti­
vation function is not differentiable [33, 26]. By adopting appropriate nonlinear differentiable 
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activation functions, the corrective signal 6i(l) can be recursively calculated as shown below 
[29]: For L - 1 ~ l ~ 1. 

6i(l) 
8E 

8ai(l) 

NI+1 8E 8aj(l + 1) L 8aj(l + 1) 8ai(l) j=l 

N I+1 

L 6j(l + 1) Tji(l + 1) (9) 
j=l 

This defines the basic formulation of the back-propagation of corrective signals of all the levels. 
Then Eq. 9 may be used to compute the gradients. 

Homogeneity Consideration in Homogeneous Iterative Model A special case of the 
generic iterative network is when the synaptic weights {wij(l)} are constant with respect to l, 
i.e., 

Wij(l) = Wij, V l (10) 

A simple way of computing the gradient is to consider only the last iteration [24, 13], 

8E 8E 
(11) 

8Wij 8Wij(L) 

However, in order to derive a more robust estimate of the gradient, some models [29, 28] adopt 
a more desirable approach of averaging the gradients over all the iterations. This may be 
mathematically derived as below: 

Note that oWi;{l) = 1. 
OWij 

t 8E 8Wij(l) 
8w"(l)~ /=1 'J 'J 

L 

L 
1=1 

L 

L 
1=1 

1.4 Characterizations of Neural Network Examples 

(12) 

In the proposed generic modeling, neural networks may be characterized by several common 
factors in the retrieving and learning phases. The factors in the retrieving phase are itera­
tion index l, and nonlinear activation function 1i(l). The factors in the learning phase are 
recursion index m, measure function E for the training criterion, updating formulation <1>, 

back-propagated corrective signals 6i(l), and homogeneity consideration in certain models (see 
Table 1). More detailed illustration of such classification method will be discussed in the next 
section. 
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1.5 Architectural Aspects of ANNs 

This generic formulation also leads to a basic structure for a parallel neurocomputer architec­
ture and/or a universal simulation tool. Summarized below are several key considerations for 
parallel processing and array architecture implementations of neural networks: 

• Convergence issues of synchronous (parallel) updating of system dynamics in the retriev­
ing phase. 

• The architectural design should ensure that the processing in both the retrieving phase 
and the learning phase share the same array configuration, storage, and processing hard­
ware. This will not only speed up real-time learning but also avoid the difficulty in the 
reloading of synaptic weights for retrieval. 

• The digital design must identify a proper digital arithmetic technique to efficiently com­
pute the necessary operations required in both phases. 

• The array architecture design should maximize the strength of VLSI in terms of intensive 
and pipel1ned computing and yet circumvents its main limitation on communication. It 
is desirable to find a local interconnectivity of systolic solution to the implementation of 
the global interconnectivity of neural networks. 

• VLSI arrays can be systematically derived from the dependency structure of the neural 
network algorithms [25, 19]. 

• A digital design must offer a greater flexibility, so a general-purpose programmable array 
architecture is derived for implementing a wide variety of neural network algorithms in 
both the retrieving and the learning phases. 

Based on Table 1, it may be further derived that operations in both the retrieving and 
learning phases of the generic iterative ANN models can be formulated as consecutive matrix­
vector multiplication, consecutive vector-matrix multiplication, or outer-product updating prob­
lems [21]. In terms of the array structure, all these formulations lead to a same universal ring 
systolic array architectures. In terms of the functional operations at each processor, all these 
formulations calls for a MAC (multiply and accumulation) processor and a nonlinear operator. 
The choice of arithmetic processing unit can be determined only after an extensive simulation 
and numerical analysis. Preliminarily speaking, for a time efficient design, a parallel array 
multiplier (with piecewise linear approximation of sigmoid functions) may still be a favored 
option. For an area efficient design, a Cordic processor (which can implement both MAC and 
nonlinear sigmoid function) might be a good alternative [2, 21, 14]. 

2 Unification of Existing Connectionist Neural Networks 

This section illustrates how the generic iterative ANN models may be used as a unifying model 
for the existing connectionist neural networks. The case studies include: 

• An example of convergence study of parallel updating in Hopfield associative neural 
networks. 

• Unifying several competitive learning networks under the generic iterative ANN formu­
lation. 

• A unified viewpoint of the multilayer feed-forward neural networks, especially the link 
between multilayer perceptrons and hidden Markov models. 
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2.1 Parallel Hopfield Associative Neural Network 

A Hopfield associative neural network is a single layer (time iterative) feedback network, which 
consists of N binary-valued neurons linked to each other with symmetric weights {Wij = Wji}. 
In the Hopfield model, thresholding elements are added to linear associators to perform iterative 
feedback auto-association tasks. Moreover, a notion of energy function is adopted to prove that 
the feedback system exhibits a number of locally stable points (attractors) in the state space, 
which provides a basic mechanism for signal retrieval and error correction from partial or noisy 
missing information [13]. 

Retrieving Phase The system dynamics in the retrieving phase of a Hopfield associative 
network is 

ui(1 + 1) 
j=l 

ai(1 + 1) 
if ui(1 + 1) > -(Ji 
if ui(1 + 1) < -(Ji 
if ui(1 + 1) = -(Ji 

(13) 

The original Hopfield associative network requires each neuron to be updated asynchronously 
(sequentially) to guarantee the convergence of the system dynamics. The dynamic evolution of 
the system state can be regarded as an energy minimization that continues until a stable state 
(local energy minimum) is reached. To demonstrate the convergence, a notion of Liapunov 
energy function is often instrumental. 

In the following, we will show that synchronous (parallel) updating of all the neurons 
at each iteration is also possible for non-negative definite symmetric weight matrix {Wij}. 
To demonstrate the convergence of the parallel updating iterations, it is useful to adopt the 
following Liapunov energy function E(l) ( after the I-th updating ): 

1 N N N 

E(l) = - 2" L L Wijai( I)aj( I) - L (Jiai(l) 
~1~1 ~1 

If all the neurons are updated in parallel at each time iteration, then the energy change 
between any two iterations is 

D.E(l + 1) E(l + 1) - E(I) 
1 N N N 

-- L L wijai(1 + 1)aj(l + 1) - L (Jiai(1 + 1) 
2 i=l j=l i=1 
1 N N N 

+2" L L wijai(l)aj(l) + L (Jia;(I) 
i=1 j=1 i=1 

N N 
- L(ai(1 + 1) - a;(I)) [L wijaj(l) + (J;] 

;=1 j=1 

1 N N 

-- L(ai(1 + 1) - ai(I))[L w;j(aj(1 + 1) - aj(l))] 
2 i=l j=1 

- D. aT(l + 1) [u(l + 1) + (J] 
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-~ .6.aT (l+l)W .6.a(l+l) 

= .6.E1(l + 1) + .6.E2(l + 1) (14) 

Since the nondecreasing thresholding functions are assumed, the signs of {.6.ai(l + 1)} and 
{u;(l + 1) + Oil are the same (see Eq. 13), and .6.E1(l + 1) ::; o. In order to also guarantee 
.6.E2(1+1) ::; 0, the weight matrix should be a non-negative definite matrix, this can be ensured 
by setting weight matrix to be 

p P 
Wi; = :L(2,B~P) - 1)(2,B)P) - 1), W = :L[2v{p) - 1] [2v{p) - l]T (15) 

p=l p=l 

where P binary reference patterns, represented by {v{p) = [,B~p), ,B~p)" ... , ,B}:)], p = 1, 2, ... , P}, 
are stored in and to be retrieved from the associative network. Note that the W matrix is 
formed by an outer product without diagonal nullification (as opposed to original Hopfield 
network [13]), so it is a non-negative definite matrix. 

Learning Phase The weight detennination process based on Eq. 15 can be interpreted by 
the recursive weight updating formulation given in Eq. 3. The measurement function E to be 
optimized bears the same form as the energy function in the retrieving phase, Le., 

1 N N N 

E = -2":L:Lw;;a;(L)aj(L)-:LO;ai(L) 
i=l ;=1 ;=1 

1 N N N 

= - 2":L:L wi;,B;,B; - :L Oi,Bi 
·;=1 ;=1 i=l 

If we use the additive updating updating formulation (cf Eq. 5), then 

BE Tl 
Wi; <== Wi; - Tl-B = Wi; + -2,Bi,B; (16) 

Wi; 
where the the recursion index is corresponding to each training pattern used. This leads to 
the simplest form of Hebbian learning rule [11], and the stored pattern {,Bi} are the desired 
outputs (desired auto-associative retrieval information). 

Instead of going through the iterative Hebbian weight updating learning procedures, Hop­
field used the ensemble average of {Wi;} over P (training) pattern recursions to determine the 
fixed connection weights with approximate zero statistical mean [13], this leads to the weight 
determination formulation given in Eq. 15. 

2.2 Competitive Learning Networks 

Competitive learning is an unsupervised procedure that classify a set of input patterns into a 
number of disjoint clusters in such a way that the input patterns within each cluster are all 
similar to one another [12]. Most competitive learning networks are single layer feed-forward 
networks using winner-take-all mechanism. It is possible to provide a unified perspective of 
several competitive learning networks based on the generic iterative ANN formulation (see 
Table 1). The main idea is to identify a common measurement function E used in the learning 
phase of all the competitive learning networks, Le., 

N 

E = ~ :L ,Bi(a; - Wi;? 
i=l 

(17) 
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Retrieving Phase Without loss of generality, the system dynamics between the inputs {a;} 
and the outputs {.8i} in the retrieving phase of a competitive learning network is given: 

U' • 

.8i = 

No 

"'""w .. a· L...J 'J J 
j=l 

{ I if Ui > Uk Yk ° if else 
(18) 

where 1 S; i S; N1• The winner-take-all competition mechanism (e.g., lateral inhibitions) is 
used in the output layer so that only the neuron receiving largest input is activated. 

Learning Phase The learning phase in the competitive learning network can also be inter­
preted by the recursive weight updating formulation (see Eq. 3 and Eq. 17). 

W .. 
'J 

BE 
Wij -1]-­

BWij 

Wij + 1].8i (aj - Wij) (19) 

where one recursion is for one pattern. According to Eqs. 18, 19 implies that only the weights 
associated with the winning neuron are updated and all the other weights remain unchanged. 
This is a special feature of the competitive learning networks. 

We hasten to note that the above formulation can only describe the basic feature commonly 
shared by the competitive learning networks. In actuality, each individual model has almost 
unexceptionally adopted certain special mechanism - see the "comments" in Table 1. Some 
examples are highlighted below. 

• Kohonen's self-organized feature map [17, 18] introduced a neighborhood (whose size 
slowly decreases with each iteration) of a winning neuron in a two dimensional neuron 
layer. Weights associated with the winner and the neurons in the neighborhood of the 
winner are all modified. This has purpose of making the neurons more responsive to the 
current input pattern. 

• The adaptive resonance theory (ART) by Carpenter and Grossberg [10, 7, 8] introduced 
a vigilance test to adaptively create new neuron units for the incoming input patterns 
which are quite different from the memorized patterns. This test requires additional 
modifiable feedback weights connecting from output layer to the input layer. 

• Rumelhart's competitive learning algorithm [30] introduced a leaky learning model to 
prevent the possibility of totally unlearned neurons. This is done by performing training 
in Eq. 19 over all the weights in the network. However, the weights associated with the 
winner get much larger 1] values. 

• Neocognitron can be formed as a hierarchical learning system by cascading many single 
layer competitive learning networks[9]. The learning for each layer is largely based on 
single layer analysis. It progresses stage by stage from the input layer to the output 
layer. 
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2.3 Multilayer Feed-Forward Neural Networks 

Multilayer feed-forward neural networks are spatially iterative neural networks, which have 
several homogeneous or heterogeneous layers of hidden neuron units between the input and 
output neuron layers (see Figure 1). The weight updating for the hidden layers adopts the 
mechanism of back-propagated corrective signal from the output layer (see Section 1.3). 

This section provides a unified viewpoint of two popular multilayer feed-forward neural 
networks: multilayer perceptrons [29] and hidden Markov models [28]. 

2.3.1 Multilayer Perceptrons 

Retrieving Phase The system dynamics in the retrieving phase of an L-Iayer perceptron 
can be described by the following spatially iterative equations (where the iteration index l 
denotes the layer iterations): 

Nz 

ui(l + 1) = L Wij(l + l)aj(l) 
j=l 

aiel + 1) = fi(Ui(l + 1) + 8i(l + 1)) (20) 

where 1 :::; i :::; Nl+b 0 :::; l :::; L - 1, and fi(l + 1) is non-decreasing and differentiable. 
For simplicity, the modifiable external inputs {8i(l + I)} are often treated as special synaptic 
weights {wi,o(l + I)} which have clamped inputs ao(l) = 1. 

Learning Phase The learning phase of an L-Iayer multilayer perceptron follows the recursive 
additive weight updating formulation (see Eq. 3), i.e., gradient descent approach. Given 
a pair of input/target training patterns, {alp), i = 1, .. ·,No}, {t}p), j = 1, .. ·,NL }, and 
p = 1,···,P, our goal is to iteratively choose a set of {Wij(l), Vl} for all layers so that the 
squared error function E can be minimized; 

1 NL 1 NL 
E = - L (ti - ai(L))2 = - L (ti - 13i)2 

2 i=l 2 i=l 
(21) 

To be more specific, the iterative gradient descent formulation (with pattern recursion) for the 
multilayer perceptron can be written as: 

{)E 
Wij( l) - 7] {)Wij( 1) 

{)E {)ai(l) 
Wij(l) - 7] {)ai( l) {)Wij(l) 

{)ai( l) 
wij(l) - 7] Di(l) {)wij(l) 

{)ai( l) {)Ui( 1) 
Wij( l) - 7] Di( l) {)Ui(l) {)Wij(l) 

wij(l) - 7] Di(l)I:(ui(l))aj(l- 1) (22) 

where 1 :::; l:::; L, and f:(x) is the derivative of fi(X) with respect to x. The corrective signal 
Di(l) can I)e recursively calculated as shown below (see Eq. 9): For L - 1 :2: l :2: 1. 
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b;(l) 

(23) 

Note that the backward initialization error signal on the top layer Di( L) can be computed 
directly without recursive formulation, i.e., Di(L) = -(ti - f3i). 

2.3.2 Recurrent Back-Propagation Networks 

A special case of the multilayer perceptrons is the recurrent back-propagation network, where 
the synaptic weights wij(l) = Wij, V I (see Eq. 10). The recurrent back-propagation net­
work can be considered as a homogeneous multilayer perceptron with the iteration index I 
interpretated as the time iteration. (In essence, it is a single layer feedback network which is 
synchronously updated over a fixed (L) iterations) [29, 12]. 

All the derivations from Eqs. 20, 21, and 22, are applicable to the recurrent back­
propagation network. In addition, the averaging mechanism (see Eq. 12) introduced in Section 
1.3 is adopted. Therefore 

(24) 

Note that the computation of Di(Z) follows the back propagation rule of multilayer perceptron 
(see Eq. 23). 

2.3.3 Hidden Markov Models 

A hidden Markov model (HMM) is a doubly stochastic process with an underlying stochastic 
process that is not observable (i.e., hidden), but can only be observed through another set of 
stochastic process that produces the sequence of observed symbols [28]. From the retrieving 
phase point of view, FIMMs described by a trellis structure can be regarded as a homogeneous 
multilayer perceptrons with a squashing type of nonlinear activation function. From the learn­
ing phase point of view, the homogeneity and constant-sum constraints can be applied to the 
trellis structure to derive the Baum-Welch reestimation formulation in HMMs. 

The basic components of an HMM can be represented by: 

1. There are N possible states {qi, i = 1, 2, ... , N} in an HMM with transition probability 
{Wij }: 

Wij = Pr( qi at I I qj at 1-1), 1= 1, 2, L 
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2. The initial state probability 'lri: 

'lri = Pr( qi at I = 0) 

3. There are possible occurrence patterns {Vk} that can be observed at i-th state with 
probability 1;: 

Given an input (test or training) pattern sequence 0 = (0(0), 0(1), ... O(L)), and a pre­
specified HMM, A = {Wij, ii, 'lri}, the retrieving phase of an HMM is to compute the occurrence 
probability Pr(OIA), which allows us to choose one among several models that best matches 
the observations. The learning phase of an HMM is to find a new set of A = {Wij, ii, 'lri}, so 
that the occurrence probability Pr(OIA) can be maximized. 

Retrieving Phases It is observed that the computation of the occurrence probability in the 
retrieving phase of an HMM can be greatly facilitated by the trellis structure representation of 
the algorithm, which leads to the connectionist network structure [16]. The system dynamics 
in the retrieving phase of an HMM can thus be written: 

N 

ui(l + 1) I: Wij aj(l) (25) 
j=l 

ai(l + 1) f;( O( I + 1)) Ui( I + 1) (26) 

where 0 ~ I ~ L-l and 1 ~ i ~ N. The activation value, ai(l) = Pr(O(O), ... , 0(1), qi at II A), 
denotes the forward likelihood. The initial forward likelihood ai(O) = ii(O(O))'lri' 1 ~ i ~ N. 
The occurrence probability can then be calculated [28]: 

N N 
Pr(OIA) = I: ai(L) = I: (3i 

i=l i=l 

This again leads to the L-level feed-forward network, with I index specifying the pattern 
iteration. 

Learning Phase The Baum- Welch reestimation learning algorithm is adopted in the learn­
ing phase of an HMM to adjust the model parameters {Wij, ii, 'lri) to maximize the occurrence 
probability of the input training pattern given the modeL Given the training pattern sequence 
0, our goal is to iteratively choose a homogeneous set of {Wij}, so that the likelihood Pr(OIA) 
can be maximized [22, 28]. 

N N 
E = I: ai(L) = I: (3i (27) 

i=l i=l 

Due to the constraints imposed on the weights, Le., Wij ~ 0 and L~l Wij = 1, the multi­
plicative gradient ascent updating proposed for the iterative constrained optimization tasks 
[5, 6] can be adopted. As a matter of fact, most of the mathematical derivation follows that 
of homogeneous multilayer perceptron except the sweep recursion is adopted [15], Le., 
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Wij -¢= T) Wij 

T) Wij 

T) Wij t Oi(l) 8ai(l) 8Ui(l) 
1=1 8Ui( I) 8Wij( I) 
L 

T) Wij L Oi(l) f;(8(1)) aj(l- 1) (28) 
1=1 

Again the back-propagated corrective (or called backward likelihood) signal Oi(1) can be recur­
sively computed: 

Oi(1) 
j=l 
N 

L oj(1 + 1) Ji(8(1 + 1)) Wji 
j=l 

From Eq. 27, it is obvious that oi(L) = 8~fL) = l. 

(29) 

Unlike the back-propagation learning algorithm where T) is not explicitly determinable [20], 
the updating step T) in the Baum-Welch reestimation algorithm is constrained by the standard 
probability property, 

N 

LWij 
i=l 

N L 
1 = T) L Wij L oi(l) 1;(8(1)) aj(l- 1) 

i=l 1=1 
N L 

T) L L Wij 0;(1) fi(8(1)) aj(l- 1) 
i=l 1=1 

L N 

T) L [L Wij Oi(1) fie 8(1))) aj(l- 1) 
1=1 i=l 
L 

T) LOj(1- 1) aj(l- 1) 
1=1 
L-1 

T) L OJ(l) aj(l) 
1=0 

where j = 1, 2, "', N, and it is obvious that 

1 

Similarly, the updating for {fie Vk)} and {71"i} can also be performed, more specifically, 

(30) 
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L 

L oi(l) Ui(l) 
1=1, 9(I)=Vk 

L 

= ." L o i( I) J;( O( I)) Ui( l) 
1=1, 9(1)=vk 

L 

1/ L oi(l) ai(l) (31) 
1=1, 9(1)=vk 

3 Future Extension: Generating New Neural Networks 

Based on the better understanding of the generic ANN formulation, new models may be 
derived. Some multiplicative learning model may prove to be suitable for application where 
a constant-sum-constraint is imposed. In the following a potential multiplicative recurrent 
back-propagation network is proposed to serve this purpose. 

Retrieving Phase The system dynamics in the retrieving phase of an L-iteration (time 
iterative) multiplicative recurrent back-propagation network can be written: 

ui(l + 1) 

ai(l.+ 1) 

N 

L Wij aj(l) 
j=1 

J;( ui(l + 1) + Oi) (32) 

where 0:5 I :5 L-l and 1 :5 i:5 N. Note that, for sake of convergence, the Ji should be chosen 
to be an arbitrary polynomial function of ui(l + 1) with positive coefficients [4, 31]. This model 
is specifically useful for applications where constraints are imposed on the inputs/targets and 
weights: 

N 

ai(O) ;::: 0, V i and L ai(O) = c 
i=1 
N 

Wij;::: 0, V i,j and LWij = 1 
j=o 

Learning Phase The learning phase of the multiplicative recurrent back-propagation net­
work follows the same derivation of the recurrent back-propagation algorithm, except that the 
weights are updated in the multiplicative formulation (additive formulation is also allowed [27]). 
The goal is to maximize the measurement function E, which should be again a polynomial of 
{ai( L)} with positive coefficients. One possible choice is 

N N 
E = L ti a,( L) = L ti f3i (33) 

,=1 i=1 
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where ti :2: 0, Vi, and Ef:1 ti = c. This specifies the correlation between the target and the 
actual outputs. The weight updating follows that of recurrent back-propagation networks: 

Wij {= 11 Wij 

= 11 W;j 

L 8E 

~ 8wij(l) 

t Di(l) 8ai(l) 8u;(I) 
1=1 8Ui(l) 8Wij(l) 
L 

L D;(l) f;(u;(l)) ail- 1) 
1=1 

(34) 

where the back-propagated corrective signal Di(l) can again be recursively computed (see Eq. 
9). 

4 Conclusion 

Neural networks offer an attractive new computational tool for many applications in vision, 
speech, signal processing, and robotics. Their real potential lies in the ability to learn and self­
adapt. To fully realization such potential, there is a need of reexamination of the theoretical 
foundations of existing neural networks. For certain applications, novel neural networks will 
be necessary. To this end, a unified formulations of iterative neural networks is proposed. The 
formulation will allow us to better understand several critical issues in neural networks, such 
as convergence, stability, and connectivity issues. It can also help further our understanding of 
the relationship between neural networks and conventional approaches. The advanced math­
ematical theories and new computer tools based on the unified formulation should in many 
ways benefit the development of the simulation and implementation tools for neural networks 
research. 

References 

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann 
machines. Cognitive Science, 9:147-169, 1985. 

[2] H.M. Ahmed. Alternative arithmetic unit architectures for VLSI digital signal processors. 
In VLSI and Modern Signal Processing, chapter 16, pages 277-306. Prentice Hall, Inc., 
Englewood Cliffs, NJ, 1985. 

[3] J. A. Anderson. Neurocomputing - Paper Collections. MIT Press, 1988. 

[4] 1. E. Baum and G. R. Sell. Growth transformations for functions on manifolds. Pacific 
Journal of Mathematics, 27(2):211-227, 1968. 

[5] L.E. Baum and J. A. Eagon. An inequality with applications to statistical estimation for 
probabilistic function of Markov processes and a model for ecology. Amer. Math. Soc. 
Bull., 73:360-363, May 1967. 

[6] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in 
the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statistic., 
41:164-171, 1970. 



www.manaraa.com

163 

[7] G. A. Carpenter and S. Grossberg. ART2: Self-organization of stable category recognition 
codes for analog input patterns. In Proc. IEEE ICNN'87, San Diego, pages II 727- II 
736, 1987. 

[8] Gail A. Carpenter and Stephen Grossberg. ART2: Self-organized of stable category recog­
nition codes for analog input patterns. Applied Optics, 26(23):4919-4930, December 1987. 

[9] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism 
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193-202, 
April 1980. 

[10] S. Grossberg. Adaptive pattern classification and universal recoding: Part 1. parallel 
development and coding of neural feature detectors. Biological Cybernetics, 23:121-134, 
1976. 

[11] D. o. Hebb. The Organization of Behavior. Wiley Inc., New York, 1949. 

[12] G. E. Hinton. Connectionist learning procedure. Technical Report CMU-CS-87-115, 
Carnegie Mellon University, September 1987. 

[13] J. J. Hopfield. Neural network and physical systems with emergent collective computa­
tional abilities. In Proc. Natl'. Acad. Sci. USA, volume 79, pages 2554-2558, 1982. 

[14] J. N. Hwang. Algorithms/Applications/Architectures of Artificial Neural Nets. PhD thesis, 
Dept. of Electrical Engineering, University of Southern California, December 1988. 

[15] J. N. Hwang and S. Y. Kung. A unifying viewpoint between multilayer perceptrons and 
hidden Markov models. In IEEE Int'l Symposium on Circuits and Systems, ISCAS'89, 
Portland, pages 770-773, May 1989. 

[16] B. H. Juang. On the hidden Markov model and dynamic time warping for speech 
recogintion - a unified view. AT&T Bell Laboratories Technical Journal, 63(7):1213-1243, 
September 1984. 

[17] T. Kohonen. Self-organized formation of topologically correct feature map. Biological 
Cybernetics, 43:59--69, 1982. 

[18] T. Kohonen. Self-Organization and Associative Memory, Series in Information Science, 
Vol. 8. Springer-Verlag, New York, 1984. 

[19] S. Y. Kung. VLSI Array Processors. Prentice Hall Inc., N.J., 1988. 

[20] S. Y. Kung and J. N. Hwang. An algebraic projection analysis for optimal hidden units size 
and learning rate in back-propagation learning. In IEEE, Int'l Conf. on Neural Networks, 
ICNN'88, San Diego, pages Vol.1: 363-370, July 1988. (Also accepted for publication in 
Neural Networks.) 

[21] S.Y. Kung and J. N. Hwang. A unified systolic architecture for artificial neural net­
works. Journal of Parallel and Distributed Computing, Special Issue on Neural Networks, 
6(2):358-387, April 1989. 

[22] S. E. Levinson, 1. R. Rabiner, and M. M. Sondhi. An introduction to the application of 
the theory of probabilistic functions of a Markov process to automatic speech recognition. 
The Bell System Technical Journal, 62:1035-1074, April 1983. 



www.manaraa.com

164 

[23] R. Linsker. Self-organization in a perceptual network. IEEE Computer Magazine, 21:105-
117, March 1988. 

[24] J. 1. McClelland and D. E. Rumelhart. Distributed memory and the representation of 
general and specific information. Journal of Experimental Psychology: General, 114:158-
188, 1985. 

[25] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980. 

[26] N. J. Nilsson. Learning Machines. McGraw-Hill Book Company, 1965. 

[27] L. R. Rabiner. A tutorial on hidden Markov models ans selected applications in speech 
recognition. Proceedings IEEE, 77(2):257-286, February 1989. 

[28] L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models. IEEE ASSP 
Magazine, 3(1):4-16, January 1986. 

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations 
by error propagation. Parallel Distributed Processing (PDP): Exploration in the Mi­
crostructure of Cognition (Vol. 1), chapter 8, pages 318-362. MIT Press, Cambridge, 
Massachusetts, 1986. 

[30] D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. Cognitive 
Science, 9:75-112, 1985. 

[31] P. F. Stebe. Invariant functions of an iterative process for maximization of a polynomiaL 
Pacific Journal of Mathematics, 43(3):765-783, 1972. 

[32] B. Widrowand R. Winter. Neural nets for adaptive filtering and adaptive pattern recog­
nition. IEEE Computer Magazine, 21:25-39, March 1988. 

[33] G. Wid row and M. E. Hoff. Adaptive switching circuit. IRE Western Electronic Show 
and Convention: Convention Record, pages 96-104, 1960. 



www.manaraa.com

PRACTICAL NEURAL COMPUTING FOR ROBOTS: 
PROSPECTS FOR REAL-TIME OPERATION 

I. Aleksander 

Department of Electrical Engineering 
Imperial College of Science, Technology and Medicine 

Exhibition Road, London SW7 2BZ, U.K. 

1. Why the Recent Interest in Neural Computing? 

The sudden growth of interest in neural computing is a remarkable 
phenomenon that will be seen by future historians of computer science as 
marking the 1980s in much the same way as research into artifiCial 
intelligence (AI) has been the trademark of the 1970s. There is one major 
difference, however: in contrast with AI which was largely an outlet for a 
minority of computer scientists, neural computing unites a very broad 
community: physicists, statisticians, parallel processing experts, optical 
technologists, neurophysiologists and experimental biologists. The focus 
of this new paradigm is rather simple. It rests on the recognition by this 
diverse community that the brain 'computes' in a very different way from 
the conventional computer. 

This is quite contrary to the focus of the AI paradigm, which is based 
on the premise that an understanding of what the brain does represents a 
true understanding only if it can be explicitly expressed as a set of rules 
that, in turn, can be run on a computer which consequently performs 
artifically intelligent tasks. Those who contribute to neural computing 
believe that the brain, given sensors and a body, builds up its own hidden 
rules through what is usually called 'experience'. When a person activates 
his muscles in complex sequences driven by signals from his eyes, from 
sensory receptors in his muscles and even from his ears when performing 
an every-day act such as getting on a bus, or when he notices a 'polite 
chill' in a colleague's voice, these are manifestations of large numbers of 
implicit rules at work in the brain in a Simultaneous and coordinated 
fashion. In neural computing it is believed that the cellular structures 
within which such rules can grow and be executed are the focus of 
important study in contrast to the AI concern of trying to extract rules 
from a human being in order to run them on a computer. 

Neural computing therefore is concerned with a class of machines that 
compute by absorbing experience, a class which in that sense includes 
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the brain, but may include other machines with similar properties. It is 
important to stress that neural computing scientists are not latter-day 
Frankensteins in the business of making brains. They are however, 
united in trying to understand computing structures that are brain-like in 
the sense that they acquire knowledge through experience rather than pre­
programming. So, neural computing is not necessarily about the details 
of mimicking the neurons of the brain and their interconnections, but is 
more about the nature of the broad class of machines which behave in 
brain-like ways, and through this, add both to our armoury of knowledge 
in computing and to our ability to apply such knowledge through the 
design of novel machinery. 

Perhaps from all this it may be possible to ferret out a definition of 
neural computing: 

'Neural computing is the study of cellular networks that have a natural 
propensity for storing experiential knowledge. Such systems bear a 
resemblance to the brain in the sense that knowledge is acquired through 
training rather than programming and is retained due to changes in node 
functions. The knowledge takes the form of stable states or cycles of 
states in the operation of the net. A central property of such nets is to 
recall these states or cycles in response to the presentation of cues. 

2. Relevance to Sensor-based Robots 

Every aspect of neural computing points to its usefulness in the 
marshalling of complex sensory information into symbols that can be 
subjected to conventional computing which, in turn, generates robot 
actions. The concept of training by example is natural to robot operation 
in determining trajectories. With neural computing the training can be 
extended to include this complex sensory information and distinguish 
subtleties in such data. 

The rest of this paper will first summarise some general aspects of the 
neural computing paradigm which carry the penalty of slowness when 
performed on conventional computers. The methods developed in the 
author's laboratory are then described. These are better placed for 
implementation and real-time performance since they are based on 
conventional logic design methodology. A system that has gone into 
industrial use (the WISARD) will be described. Current work which 
makes use of probabilistic parameters will be presented at the end of the 
paper. 
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3. Some History 

There is an undoubted degree of hype associated with this field. 
Phrases such as 'the dawn of a new era' are used by conference organisers 
and the press talks of 'new computers that are built like the brain and 
really think for themselves'. But there is nothing new about neural 
computing: it is as fundamental as the more conventional or 'algorithmic' 
mode. Norbert Wiener in his 1947 book 'Cybernetics' wrote: 

'Mr. Pitts had the good furtune to come under Dr. McCulloch's influence 
(in 1943) and the two began working quite early on problems concerning 
the union of nerve fibres by synapses into systems with given overall 
properties ..... They added elements suggested by the ideas of Turing in 
1936: the conSideration of nets containing cycles .. .' 

So some of the discussions that echo in the auditoria of contemporary 
conferences were begun more than ten years before the invention of the 
computer that we know and love. The McCulloch and Pitts model of the 
neuron is still the basis for more neural node models (1943). and Turing's 
concern about nets and cycles is the very stuff of neural computing. 
Indeed the 1960s were most productive in this area. Well known is the 
work of Rosenblatt of Cornell Unversity on 'perceptrons' (Rosenblatt. 
1962) and the destruction of the credibility of this work by Minsky and 
Papert of MIT in 1969 which led to a halt to such work in the USA. 

But in Europe. neural net researchers were not as prone to the winds of 
change that blew from the direction of MIT as their colleagues in the USA. 
Eduardo Caianiello in Italy and Teuvo Kohonen in Finland continued to 
develop an understanding of neural computers to great depth and 
elegance. I too. largely through a fascination with how well and fast the 
brain performs tasks of pattern recognition with components much slower 
than those found in computers. continued designing machines based on 
neuron models that I first defined in 1965. These are characterised by the 
fact that they are easily implemented in electronics and understood 
through formal logic. This has led to the commercialisation of practical 
systems. and is pointing to new high-performance systems for the future 
(Aleksander 1984). 

Despite the historical appeal of these approaches. there is no doubt that 
the work of the 'Parallel Distributed Processing' (PDP) group in the USA 
has been fundamental in nailing down both the language and the targets 
of the current paradigm (Rumelhart and McClelland. 1986). But what is 
the rapidly expanding band of workers in neural computing hoping to 
achieve? 
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4. Four Promises 

There appear to be be four major reasons for developing neural 
computing methods. the first of which is a rebuttal of the Minsky and 
Papert criticism. Although this is not the place to debate the technical 
issues. it is helpful to note that the criticism was founded on a 
demonstration that there are simple pattern recognition tasks that neural 
nets appeared not to be able to accomplish. It is now clear that this 
conclusion was mistaken because it considered only a restricted class of 
neural system. In fact. the first promise of neural computing it that it is 
computationally complete. This means that. give an appropriate neural 
structure. and appropriate training. there are no computational tasks that 
are not available to neural nets. This does not mean that a neural net is 
as efficient at performing certain tasks as a conventional computer. For 
example. in order to perform multiplications. the net may have to learn 
multiplication tables in the way that a human being does. but these can 
be easily performed by a fast arithmetic unit in a conventional computer. 
Also there are tasks for which the neural net not only outperforms the 
conventional computer but is the only way of performing the task. 

This leads to the second promise: functional use of experiential 
knowledge. It is here that the neural net can perform functions that are 
beyond the capability of rule-based. conventional systems. Typical are the 
Achilles' heels of ArtifiCial Intelligence: speech. language and scene 
understanding. The problem with conventional approaches to these tasks 
is either that rules are hard to find. or the number of such rules explodes 
alarmingly even for simple problems. Imagine having to distinguish 
betweeen the faces of two people. What information should be extracted? 
What should be measured in this information? How can we be sure that 
what we meaure will distinguish between the faces? Although a fair 
amount of study may provide the answers to some of these questions and 
when compiled into a program may actually differentiate between the 
faces in question. there is no guarantee that the same measures can be 
applied to another pair of faces. In contrast. 20 seconds of exposure to a 
neurally based system such as the WISARD (Aleksander et al. 1984 and 
as described below) will allow the net to select among a vast number of 
rules (node functions) in a very short time. to provide the best 
diSCrimination between the images in question. The third promise is 
performance: rapid solutions to problems which in conventional 
computers would take a long time. For example it has been possible to 
solve the 'travelling salesman' problem* in many fewer steps than by 
conventional (exhaustive) algorithms. 

*The travelling salesman problem is the finding of the shortest route 
between geographically scattered pOints. This is traditionally difficult for 
conventional machines because it relies on trying out an astronomically 
large parallel and then allowing these to interact finds solutions very 
rapidly. 
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But there is a snag to the exploitation of this performance: neural 
systems have actually to be built or run on general purpose parallel 
machines. It is worth pointing out that machines such as the Connection 
Machine (Hillis 1986) are not neural systems. They are general purpose 
parallel systems that require programs just as much as any conventional 
machine. But the program could be the structure of the neural net. that 
is. an emulation. which due to the parallelism of the host machine. 
exploits the speed with which the neural system is capable of solving 
some problems. Indeed. several 'neural computers' that are appearing on 
the market are emulations of this kind. A useful function that they 
perform is to provide a tutorial vehicle that gives their users experience in 
the way such systems work. The first serious neural computer that is 
capable of solving real-life problems in real time is still to be built. There 
are many opportunities open for the design of the neural node (e.g. by 
optical means. conventional memory chips or special Very Large Scale 
Integrated systems). . 

The fourth and final promise of neural computing is the provision of an 
insight into the computational characteristics of the brain. This is very 
much the stated aim of the authors of the PDP books. In fact. it is 
becoming apparent that the nature of the research that is done in neural 
computing will differ depending on whether one is concerned with the 
understanding of prinCiples and the design of machines on the one hand, 
or with brain modelling on the other. In the first one of these. general 
structures are investigated. while in the second. certain structure 
characteristics may be ruled out of court should they not conform with 
what is known of the brain. even if such structures may be 
computationally highly competent. Of course some work faces both ways. 
being concerned both with (as an example) the creation of novel 
machinery and with providing a deeper analysis of what may be 
happening in the brain when it is 'understanding' language. 

5. The WISARD 

The WISARD (Aleksander et al. 1984) was probably the first machine 
based on neural prinCiples to arrive on the market. It is largely an image 
processing machine which is shown examples of sets of patterns together 
with their classification. An example is the recognition of safe and unsafe 
bayonet lamp connectors as seen through a televiSion camera. The net is 
trained to respond in one sector for safe ones and another sector for 
unsafe ones. 

It then builds internal rules in its 64.000 neurons which cause the net 
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to respond appropriately to previously unseen lamps. The neurons used 
are of the LOGIC type first proposed by ourselves in 1965 (Aleksander 
1965). A conventional Random-Access Memory is used as the neural 
node. In Fig. 1 the RAM is compared to the classical McCulloch and Pitts 
model of the neuron. Figure 2 shows how the WISARD is constructed out 
of these devices and is compared to the historical Perceptron. Here is how 
it works. 

The WISARD (Wilkie Stonham and Aleksander's Recognition Device) is 
the simplest possible single-layer network of logical neurons. The image 
to be recognised is presented as K bits (typically these may be organised 
into a 512x 512 bit matrix in the frame store of the WISARD). A group of 
Kin logical neurons. where n is the number of inputs. is connected 
randomly to the image bits. Such a group is called a 'discriminator' (S) 
and one discriminator for each deSired recognition class is generally used. 

The basic mode of learning and remembering may be formally stated as 
follows. Say that at K there is an image T (1) of unit area. Starting with 
all RAM locations set to zero the system is taught to recognise T (1) by 
setting all the current RAM locations 'addressed' by T (1) to 1. Say that 
the discriminator is similarly trained on a second image. T (2). Given 
some unknown image T (U) which overlaps bit by bit over an area A (1) 
with T (1) and A (2) with T (2), it may be easily shown that the proportion 
of RAMs responding with a 1 (the response of the discriminator) is: 

r (U) = (A (1) )n + (A (2) )n - (A (1.2) )n 

If yes. A (1.2) is the overlap between T(U). T(1) and T(2) which forms the 
last term. This needs to be subtracted so that it is not counted twice. 
Similar equations may be generated for larger training sets. They are just 
bigger equations but similar in character to the above. This character is 
largely defined by the following properties. If T(U) is close to any of the 
training patterns. r(U) will be high. If the training patterns are similar to 
one another there will be good interpolation in r(U). while if there are not. 
r(U) will only be high in the vicinity of the training patterns. The key 
factor is that this response is given after only one pass through the 
system and therefore is equivalent to a parallel search. WISARD uses 
several discriminators (one for each class) as mentioned. so the decision 
can go to the the highest response. and its difference from the next 
highest may be used as a measure of confidence. So. at its extremes of 
operation the system can both discriminate between similar patterns and 
classify together dissimilar patterns. It is the parameter n which is 
crucial in determining this performance. The actual structure of the 
machines is based on a patented way of using fast. state-of-the-art silicon 
memory. 

The patent has been purchased by a UK company which engineered the 
system into a product which is currently used in a variety of quality 
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control and security applications. Curiously, this system has never been 
marketed as a neural computer. Plans are in progress to capitalise on 
this technique in building a general purpose high-performance neural 
computer which will not only recognise patterns, but perfoRm the 
generality of experiential knowledge-based tasks discussed earlier. This is 
based on probabilistic nodes and pyramids as described below. 

6. A Logical Calculus Based on Probabilistic Pyramids 

In this area of work we provide a framework of three nested levels of 
components: a LEARNING ATOM, a PYRAMID which is made up of 
learning atoms and a NEURAL NET which is made up of pyramids. 
('Higher-level' systems can be made up of neural nets, but we leave that 
aside.) A NEURON is best approximated by a pyramidal structure of 
atoms. 

The learning atom has what seems to be an irreducible set of four 
attributes. The first is an output which either fires (denoted by 1), does 
not fire (0) or does not 'know' whether to fire or not (d). In the last case, 
the output becomes 0 or 1 with equal probability, the decision whether to 
fire or not being taken at discrete time intervals*. It is the addition of this 
probabilistic state that is one of the factors that distinguishes this 
approach from that used in the WlSARD. 

So 1, 0 and d are the INTERNAL STATES of the learning atom. The 
second attribute is the set of n inputs, say 1(1), .. .i(n). The third attribute 
is a variable function which uniquely associates each possible pattern of 
Os and Is over the n inputs with an internal state value (0, 1 or d) of the 
atom. The function is said to be variable because of the fourth attribute 
of the learning atom: its learning property. The nature of this (which also 
seems to be irreducible) is that the atom must receive information (say 
through the value of some variable T) as to whether, at a considered time 
interval and only for the current input pattern, its . response is correct 
(T=I) or incorrect (T=-I). When nothing is to be done T=O. IfT=1 and the 
state associated with the current input is 0 or 1 nothing happens, as the 
function is acting correctly. But ifT=1 and the state associated with the 
input is d, the d is changed to whatever the current (arbitrarily generated) 
output many be. If T=-1 it is assumed that the atom has consistently, 
over may time intervals, produced the wrong output. If the state is 0 or 1, 
it is changed to d. If the state is d, nothing happens as the atom is not 
responsible for whatever leads to the conclusion that there is a consistent 
error. 

*Much of our work uses several states with graded probabilites of 
generation a logical 1. This has been omitted from this paper for the sake" 
of clarity, but without loss of generality. 
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It is noted that this definition of a learning atom is a rough 
approximation to the 'squashing function' of Rumelhart e al. (1986. 
Chapter 8) with only three probability states (0.1 andO.S) and with no 
interdependence on the way in which the firing probabilities are set for 
individual input patterns. It can be shown that pyramids of such atoms 
yield closer approximations to the squashing function. 

A pyramid (as shown in Fig. 3) has two main parameters. N the number of 
inputs for each node (the case of pyramids with different atoms is not 
considered here). and D the depth (or number of layers). There is a 
dependent variable. the 'width' of the base of the pyramid W. The pyramid 
learns to determine the probability of a 1 at its output atom in response 
to a pattern of Os and Is at the W inputs. The correctness or error of the 
behaviour is detected at the output of the top node only and it is from this 
that action flows to the other 'hidden' units. Pyramids require the 
training of hidden units which is one of the most challenging aspects of 
artificial neural net studies. Hinton and Sejnowski (see Rumelhart and 
McClelland 1986. Chapter 7) have suggested that in Boltzmann nets that 
are symmetrically connected (Le. if node A transmits to node B via a given 
symaptic weight. then B transmits to A via the same weight) hidden units 
may be treated in the same way as visible units. 

Weights may be optimally adjusted by measuring the probability with 
which the nodes at the ends of a weight fire Simultaneously. (a) when the 
net is allowed to run freely and (b) when the training information is 
'clamped' on visible (non-hidden) parts of the net. The weights are 
adjusted to minimise the difference between these two measurements. 
There is a serious lack of biological credence in this model: first. neurons 
are not bidirectionally connected and second. supervisory elements which 
retain knowledge of firing probabilities under the two stated conditions (a) 
and (b) are not known to exist. 

Recently much attention has been paid to the 'error-back-propagation' 
method of dealing with hidden units due to Hinton. Rumelhart and 
Williams (Rumelhart and McClelland 1986. Chapter 7). Here. note of an 
error occurring at an output unit is propagated backwards. unit by unit. 
multiplied by the weights found along these propagation paths. Such 
signals are used to adjust the weights to reduce the error. This too is 
biologically unreal as there are no known ways for such signals to 
propagate backwords along axons. 

In our logical calculus. we only assume that all the atoms in a pyramid 
should receive information on whether the output is erroneous or correct 
without defining special paths for the propagation of such information. 
This provides a less demanding framework for biological enquiry than 
either of the two models quoted above. We call this PYRAMIDAL 
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LEARNING. It goes as follows. Every training instance consists of 
applying data to all of the W inputs of the pyramid. and comparing the 
output to a desired output. Initially all the atoms of the pyramid are 
assumed to be in the d state for all the possible input patterns. This 
means that for any given input pattern the output atom generates Os and 
Is with equal probability. As the desired input can only be 0 or 1. T=1 is 
generated by the error detector (Fig. 3) as soon as the correct output is 
achieved. The learning property. discussed above. is such that all the 
atoms associate their current output with their current input. This 
ensures that if the data of the training instance were to be presented 
again. and the system were no longer in the training mode. then all the 
atoms would enter their learnt state. generating the correct output as the 
overall output of the pyramid. Small changes from training inputs reduce 
the probability of fIring in the trained way by an amount that may easily 
be calculated. 

At the early stages of learning the degree of arbitrariness offered by the 
d states is high. This diminishes as these states are cOmmitted to 0 and 
1. Clearly. this form of training ensures that the states of the learning 
atoms are always correct with respect to the past sequence of training 
instances. Errors can only occur with respect to as yet unseen instances. 
These are characterised by the pyramid's consistent inability to generate 
the deSired output. On detecting such an error the error detector floods 
the pyramid with the T= 1 sign returning the currently addressed atom 
states responsible for the error to the d state. We state a law without 
proof. 

7. The Law of Pyramidal Learning 

Pyramidal learning converges. provided that the deSired fuction can be 
achieved by the pyramid. 

This is not the place for providing rigorous proofs of our fIndings; suffice 
it to say that the above law is based on the fact that. at most. only one 
memory state per atom reverts to the d state whenever an error is 
detected. preserVing other states that are still correct with respect to the 
prior training sequence. The learning is therefore conservative of 
successes. leading to convergence. albeit less rapidly as the desired 
function is approached than at the beginning of the process. 
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8. The Future: Neural Robotics? 

The considerable exaggeration that surrounds much current work on 
neural computing is by no means constructive. However, it is of some 
consolation that it is self-defeating as well. Many laboratories new to 
neural computing are discovering that it is not fruitful to cobble together 
any simulation of a neural net, and then hope that it will compute the 
first thought-of task. This quickly diverts the thrust towards a need to 
understand what can and cannot be expected of a particular net, and the 
way the parameters of a net are optimised. It is the aim of many 
dedicated scientists to contribute to such understanding, which is the 
best way of fighting the exaggeration. 

In robotics, it may be important to revisit the 'blocksworld' notion as 
framed by Winograd (1973). This methodology relied first, on a highly 
stylised and Simplified environment for the robot so that symbols such as 
'box' and 'red' and 'pyramid' could be extracted from some digitized image. 
Second, it used a logic-based extraction of 'understanding' from simple 
sentences such as 'put the pyramid on the red box'. The methodology 
could not extend beyond its assumed SimpliCity. Neural computing 
provides an alternative approach to both of these problems. There is 
promise of being able to extract features from much more complex scenes 
(e.g. 'road', 'ftrtree', 'picket fence') and of rapid extraction of meaning from 
more elaborate sentences. 

So what is likely to be the ultimate neural computing architecture of the 
future? This is an area on which researchers may differ, mainly because 
of their dedication to the understanding of specific approaches. But one 
thing does seem to be evident. Neural computing of the future is not 
likely to be a replacement of conventional computing and AI programs, 
but is likely to form a complementary technology. It would border on the 
frivolous to create, with difficulty, neural computations that can be 
performed with ease through conventional methods. The key issue 
however is that the two methods must be made to exist under the same 
roof (or in the same metal box). So the ultimate challenge for experts in 
computer architecture is to exploit the two technologies within the box, 
and present a single, flexible interface to the user. If they succeed, we 
may well witness a quantum step forward in the ease with which humans 
will be able to interact with machines and hence a step forward in the 
usefulness of the machines themselves. 
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ABSTRACT 

We describe an efficient neuromorphic formulation to accurately solve the in­
verse kinematics problem for redundant manipulators, thereby enabling devel­
opment of enhanced anthropomorphic capability and dexterity. Our approach 
involves a dynamical learning procedure based on a novel formalism in neural 
network theory: the concept of "terminal" attractors, that are shown to corre­
spond to solutions of the nonlinear neural dynamics with infinite local stability. 
Topographically mapped terminal attractors are then used to define a neural 
network whose synaptic elements can rapidly encapture the inverse kinematics 
transformations using a priori generated examples and, subsequently gener­
alize to compute the joint-space coordinates required to achieve arbitrary end­
effector configurations. Unlike prior neuromorphic implementations, this tech­
nique can also systematically exploit redundancy to optimize kinematic criteria, 
e.g. torque optimization, manipulability etc. and is scalable to configurations of 
practical interest. Simulations on 3-DOF and 7-DOF redundant manipulators, 
are used to validate our theoretical framework and illustrate its computational 
efficacy. 

1. INTRODUCTION 

The successful deployment of industrial teleoperated and reprogramrnable robots is lead­
ing to a rapidly increasing interest in applying this technology to more exacting scientific 
applications in unstructured and hazardous environments, such as space missions, mainte­
nance activities in nuclear plants, undersea operations etc. In these envisioned applications, 
significantly enhanced capability, dexterity and reliability, is essential to achieve real-time 
operational responses in a semi-autonomous decision environment characterized by severe 
constraints on size, weight and power consumption. Despite a tremendous spurt in research 
activity and growing literature on the subject, provision of the above attributes entails a level 
of paradigmatic complexity far exceeding that what can be provided by the existing model­
ing strategies. Traditional computing paradigms have typically focussed on problems that 

NATO AS! Series, Vol. F 66 
Sensor-Based Robots: Algorithms and Architectures 
Edited by C. S. George Lee 
© Springer-Verlag Berlin Heidelberg 1991 
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are clearly defined and deterministic, and can best be handled by computers employing 
rigorous, precise logic, algorithms or production rules. But, the anthropomorphic capability 
and perception necessitated by the unstructured applications to be performed by the next 
generation intelligent machines entails providing for situations which may have received no 
prior treatment or thought. These problems are in general ill-posed, ill-conditioned and 
plagued with incomplete information and uncertainty and often must satisfy large numbers 
of competing constraints. These problems typically involve acquisition and processing of 
large amounts of sensory data. It is however observed that living systems handle analo­
gous problems of sensor-motor coordination and vision with remarkable ease, and reveal 
a spontaneous emergent ability that enables them to adapt their structure and function. 
Consequently, the latter class entails a level of computational complexity that necessitates 
recourse to alternate paradigms which are inherently amenable to emulating characteristics 
of concurrent processing. 

Artificial neural networks are defined as massively parallel adaptive dynamical systems 
modeled on the general features of biological networks, that are intended to interact with 
the objects of the real world and its statistical characteristics in the same way the biological 
systems do. In contrast to the existing notions on imperative and symbolic comput­
ing, the potential advantages of neuronal processing arise as a result of their ability to 
perform concurrent, asynchronous and distributed information processing, in a dynamic 
self-organizing manner typical of living systems. These individual neurons having simple 
properties, and interacting according to relatively simple rules can accomplish collectively 
complex functions such as generalization, error correction, pattern classification, learning 
etc. However their paradigmatic strength for potential applications, which require solv­
ing intractable computational problems and adaptive modeling, arises from their emergent 
ability to achieve functional synthesis, i.e., extract invariances and establish relationships 
between multiple continuous-valued inputs and outputs, based on a presentation of a large 
number of examples. Once the underlying invariances have been en captured in the synaptic 
interconnections, the networks can generalize to solve arbitrary problem instances. In addi­
tion, the operational versions of these trained networks can be dynamically "regularized" or 
adapted to overcome additional constraints imposed by the environment or the particular 
application. Thus, neural networks provide an adequate basis for developing a rudimen­
tary learning capability towards the design of autonomous robots that can self-organize and 
adapt to changes in structure and function. 

Also, integral to the realization of any application envisioned for intelligent robots is the 
ability to dexterously and adaptively manipulate in a nonstationary task workspace. There 
are two aspects to the provision of this capability. First, given the initial and final end­
effector task coordinates, simultaneously generate, in real-time a Cartesian-space trajectory 
that can achieve a goal ( the path planning problem ), and a set of joint space trajectories 
which cause the end-effector to follow the desired trajectory (inverse kinematics problem) 
while satisfying additional constraints. Secondly, provide adaptive mechanisms for respond­
ing to any unforseen changes in the workspace or the manipulator geometry. In addition, 
some applications may require online strategies for optimizing trajectories with respect to 
certain kinematic constraints, e.g., obstacle avoidance, servo-motor torque minimization, 
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joint availability etc. Currently, there is no analytical formulation that can satisfactorily 
address the problem in real-time. 

In this paper we have chosen to address the simplest problem which coalesces two of the 
issues fundamental to the development of autonomous intelligent robots, namely, enabling 
a rudimentary learning capability and improving dexterous manipulation by redundancy. In 
particular, we demonstrate a powerful new neural learning paradigm for solving a large 
class of "inverse problems", e.g. manipulator inverse kinematics, commonly encountered 
during the design of real-time, adaptive systems operating in redundant environments. The 
organization of the remaining paper is as follows. In section 2 we briefly review some of the 
existing strategies for solving the inverse kinematics of redundant manipulators in order to 
motivate a departure from the traditional jacobian-manipulation based strategies. We also 
review proposed neuromorphic approaches to this transcedental function approximation 
problem, and discuss some of the currently available implementations based on backward 
error-propagation type algorithms. In section 3 we specify the neural network architecture, 
and derive corresponding learning equations in terms of new algorithms for constrained 
differential optimization which strictly enforce the Lyapunov stability criteria. In particular, 
we introduce the notion of "terminal attractors" based on non-Lipschitzian dynamics, and 
describe their implications towards neural modeling. Section 4 presents the results of our 
investigation with 3-DOF and 7-DOF redundant manipulators. The last section presents 
the conclusions of this paper. 

2. MANIPULATOR INVERSE KINEMATICS 

A forward kinematics operator ~ is defined as a nonlinear differentiable function which 
uniquely relates a set of N Q joint variables, if, to a set of N x task space-coordinates, 
x: x = ~(if), assumed by the manipulator. However, the primary practical interest in 
manipulator kinematics is the inverse problem, 

(2.1) 

i.e. determine one or more sets of joint configurations which take the end-effector into a 
desired task position and orientation in the operational workspace. Though the kinemat­
ics equations relating unknown joint-coordinates to specified end-effector coordinates are 
nonlinear, closed form analytical solutions can be found for a number of non-redundant 
manipulators with special architecture. In theory, complete positioning capability can be 
achieved in Cartesian space using only six degrees of freedom. However, most manipulators 
have degenerate configurations or kinematic 

singularities, near which small displacement of the end-effector require physically unre­
alizable joint speeds, thereby leading to severe inaccuracy in the resultant motion. Since 
these singularities effectively lead to a loss of usable workspace and capability, there is a 
strong incentive to design redundant robots with additional degrees of freedom. Thus, a 
robot manipulator is kinematically redundant if the number of its degrees of freedom is 
greater than the dimension of the end-effector task space. In contradistinction to other 
engineering contexts, where redundancy per se, implies fault-tolerance, i.e component 
duplicatien allowing for continued system functionality in the event of an element failure 
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or superfluity i.e, an unneeded excess capacity, redundancy in robotics is determined rel­
ative to the task [5]. For example, a 6-DOF manipulator could be redundant with respect 
to tasks with symmetry about one axis, while an arm with 3 or more joints is redundant 
for achieving any end-effector position in a two-dimensional space. The major objective 
motivating introduction of redundancy in robot design and control is to use the additional 
degrees of freedom to improve performance in complex and unstructured environments. 
It helps overcome kinematic, mechanical and other design limitations of non-redundant 
manipulators, and simultaneously satisfy additional constraints, such as obstacle avoidance 
[15], minimization of actuator torques [13], singularity avoidance [1], providing greater dex­
terity [6], minimization of kinetic energy, improvement of some measure of manipulability, 
etc. 

However, incorporation of redundancy injects additional complexity into the problem. 
For redundant manipulators, the kinematic equations relating the specified end-effector task 
coordinates to the unknown joint angles may not have a unique solution, and in general 
the problem is both ill-posed (see Fig. 1) and ill-conditioned. Often an infinite number of 
joint-configurations can be obtained to satisfy a given end-effector configuration. However, 
it can be shown [5] that the infinity of solutions can be mapped into a finite set of manifolds. 
Because of this infinity of solutions, many redundant manipulator investigators have chosen 
to focus on the instantaneous or differential kinematics, which uses a jacobian-matrix to 
relate end-effector velocities to the joint velocities. The jacobian is defined as 

x = J(ij) q (2.2) 

For redundant robots the manipulator Jacobian is not uniquely invertible, and pseudo­
inverse techniques can be used to select a solution from the infinity of possible solutions 
in the null space of J(ij). Eq. (2.2) is often referred to as the inverse kinematics solution, 
although (2.1) is the true inverse kinematics problem. 

Given a desired end-effector velocity, x, the joint velocities can simply be determined 
by: 

(2.3) 

where Jt (q) is the pseudo-inverse, or a weighted pseudo-inverse, of the manipulator J aco­
bian matrix. This redundancy resolution solution minimizes a weighted quadratic norm of 
instantaneous joint velocities. The end-effector velocities are typically generated by a path 
planning algorithm, and the joint velocities computed by (2.3) are used as the reference 
input to a joint-space control system. 

This solution can be modified by adding a null space component to the joint velocities 
[17]: 

(2.4) 

where z is an arbitrary vector. The term (I - Jt(ij)J(ij)) projects this arbitrary vector into 
the null space of the manipulator. Physically, any motion in the null space is an instanta­
neous internal motion of the manipulator which causes no motion of the end-effector. Many 
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redundancy resolution criteria can be developed as potential functions, and z might be the 
gradient of the resolution potential function, i.e., ,z = aV''l1(q) , where a is a weighting 
factor. Then for a given end-effector configuration, the gradient of this function is used to 
control joint velocity in the redundant directions, in a manner that forces the manipulator 
to seek an optimal configuration. However, the pseudo-inverse resolution techniques are 
generally not cyclic [1,15], i.e. these techniques do not generate closed joint-space trajec­
tories corresponding to closed end-effector trajectories, thereby posing a serious limitation 
for practical implementations. Other researchers have used the null space of the jacobian, 
which corresponds to the self-motion of the robot, to optimize various performance criteria. 
For example, Liegeois [17] has developed a gradient projection scheme that utilizes the null 
space of the Jacobian to optimize a joint-position dependent, scalar performance criterion. 

Recently focus has been on redundancy resolution techniques based on global or 
local resolution of redundancy. The primary objective is to determine the motion of the 
joints to simultaneously achieve end-effector trajectory control while optimizing an addi­
tional kinematic constraint. Hollerbach and Suh [13] have suggested that extra degrees 
of freedom be used to minimize the magnitude of applied torque during motion, thereby 
resolving redundancy at the acceleration level. Whitney [25] has resolved redundancy at 
the velocity level by minimizing the kinetic energy of the manipulator. Yoshikawa [26] 
proposed a powerful geometric technique that uses kinematic redundancy to increase the 
end-effector manipulability. In a similar vein, Chiu has exploited redundancy induced pos­
ture variation to maximize the coincidence of optimal directions of the manipulator with 
those of the task geometry. Chang [6] developed an extended Jacobian technique to op­
timize joint rotations for dexterous manipulation. Klein et al [15] on the other hand have 
focused on improving obstacle avoidance. Dubey et al [8] have used the gradient projection 
algorithm to improve the efficiency, mechanical advantage and flexibility of the manipu­
lator. Nonetheless, existing methods are in general very expensive computationally, and 
are unable to find global redundancy resolution optima with respect to multiple criteria in 
real-time. Also the manipulators can have more than one distinct internal motion for a 
given end-effector location but the instantaneous methods only optimize over one internal 
motion, and therefore can miss the true optimum which lies on another internal motion [5]. 

In the absence of closed form solutions, off-line iterative approximation techniques based 
on "local-methods" have been used to solve the inverse transformation problem. In this con­
text, Goldenberg et al [9] have proposed an "augmented task method" that uses a modified 
Newton-Raphson method to simultaneously obtain all the joint variables. They partition the 
augmented Jacobian matrix into an invertible non-redundant component and a redundant 
component to obtain approximate bounds on the magnitude of the joint angles. A nonlin­
ear constrained optimization is then performed to determine the angular displacements for 
the redundant joints by satisfying some auxiliary criteria. The resulting values are used to 
compute the Newton-Raphson correction that minimizes an error-residual between desired 
and current end-effector coordinates. Despite its versatility, this techniques suffers from 
algorithmic singularities, since it fails to ensure the non-singularity of the Jacobian-matrix 
partition prior to start of each iteration. Also, for a large number of degrees of freedom, the 
nonlinear optimization algorithm during each iteration induces a significant computational 
complexity. 
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In a significantly different approach Burdick [5] conducts a topological and geometrical 
analysis of the kinematics of redundant manipulators. Formulating inverse kinematics as a 
global manifold mapping problem, he uses the singularities of the forward kinematics to par­
tition the configuration space manifold into disjoint regions. The topological characteristics 
of these regions and their forward mapping are then used to rigorously analyze kinematic 
properties, such as bounds nature and number of singularities that must be encountered 
along an arbitrary cyclic path and bounds on the number of inverse kinematic solutions. 
Currently formal procedures are being developed for translating this qualitative insight to 
quantitative algorithms that could aid the design and control of redundant manipulators. 

In contrast to the algebraic and iterative strategies mentioned above, neuromorphic 
approaches to the inverse kinematics problem entail systems composed of many simple 
processors ("neurons"), fully or sparsely interconnected, whose function is determined by 
the topology and strength of the interconnections. The synaptic elements of such neural sys­
tems must capture the transcendental kinematic transformations using a priori generated 
examples enabling subsequent generalization to other points in the workspace. Thus, the 
inverse transformation equations do not need to be explicitly programmed or derived. Once 
they have been learned, the network's inherent self-organizing abilities enable it to adapt to 
changes in the environment, e.g. planning joint trajectories in the presence of obstacles, or 
to any unforseen changes in the mechanical structure of the manipulator, with little effort 
[14]. Within a neuromorphic framework, a solution of the inverse kinematic involves two 
phases, a training phase and a recall phase. The training phase involves encoding the in­
verse mapping in the network's synaptic weight space, through repeated presentations of a 
finite set of a priori generated examples, linking cartesian space end-effector coordinates 
to the corresponding joint angles. Once the network has acquired the nonlinear mapping 
imbedded within the training set, it can be used to rapidly recall, or generalize the joint con­
figuration corresponding to any arbitrary cartesian-space orientation within it's workspace 
of training, thereby eliminating the intensive computational overheads that plague the ex­
isting iterative techniques. Also, once the training cycle is completed, the time required to 
obtain a solution depends in a weak fashion on the number of degrees of freedom. 

In the past, Josin [14], Guez et al [10] and Tawel et al [24] have applied this generic 
neuromorphic paradigm to the inverse kinematics problem for a 3-DOF redundant ma­
nipulator. In particular, they train a heteroassociative, multi-layered feed-forward neural 
network using the backpropagation algorithm [22]. The following principle is commonly 
used during the training process. When the system produces a wrong output on presenta­
tion of an I/O pair, the learning update rule simply changes each weight in the direction 
which makes the size of the error decrease as rapidly as possible. The components of this 
steepest descent direction in weight space are evaluated by using the chain rule to compute 
the partial derivatives of an error function with respect to each weight. The implementa­
tion of this weight change requires recursively propagating an error signal backward through 
the network, changing weights that had a large effect on the output more than those that 
did not. This process is repeated until the residual error between the network and target 
output, over all patterns, falls below a minimum acceptable tolerance. 
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Despite its conceptual simplicity, there are a number of non-trivial issues, both from 
the kinematics perspective and from the computational cost perspective that have hitherto 
limited the efficacy of such neuromorphic solutions to the inverse kinematics problem for 
redundant motion control. The major limitations, as discerned from the existing imple­
mentations, include an unacceptably large number of training iterations ( 0(106 ) even for 
generalizing over small manifolds, see Tawel et al [24]). Also the interpolated angular co­
ordinates have relatively poor precision as compared to their algebraic or iterative counter­
parts. Besides, the backpropagation algorithm fails to efficiently scale-up to configurations 
with large number of degrees of freedom. For example manipulators with seven or more 
degrees of freedom could not be satisfactorily trained using the standard back-propagation 
algorithm even after several million iterations. Furthermore the back-propagation algorithm 
per se does not provide any intrinsic mechanism to simultaneously exploit redundancy to 
increase the task workspace (design constraints) and satisfy additional requirements inher­
ent to operations in an unstructured environment such as obstacle avoidance in real-time. 
Since the latter flexibility is quintessential to the purpose of redundant manipulators, there 
is a strong incentive to develop an alternative neural network paradigm that can be applied 
to the inverse kinematics problem. In this context we introduce a neuromorphic formalism 
for learning nonlinear mappings, that obviates many of these limitations, and can provide 
efficient and accurate solutions to a large class of inverse problems. 

3 NEURODYNAMICS MODEL 

3.1 NEURAL NETWORK SPECIFICATION 

Consider a fully connected neural network with N graded-response neurons, implement­
ing a functional mapping from the N x-dimensional end-effector cartesian space to the 
NQ-dimensional joint space of the redundant manipulator. As shown in Fig. 2, the net­
work is topographically partitioned into three mutually exclusive regions comprising of a 
set of input neurons, Sx, that receive the end-effector task coordinates, an output set SQ, 
which provides the angular coordinates required to achieve the desired end-effector motion 
and a set of "hidden" neurons, SH, whose sensitizations partially encode the input / output 
mapping being learnt. The network is presented with K training pairs of cartesian- and 
joint-space variables, { xk, il I k = 1, ... , K} obtained from the forward kinematics 
relations (see Paul [19]). 

Our goal is to determine the synaptic interconnection strengths that can correctly en­
capture the inverse kinematics mapping, q,-l, imbedded within the training samples. Our 
approach is based upon the minimization of a constrained objective ("energy") function 
given by the following expression 

E 
J( 

1 ~ ( 1 ~ k k 2 1 ~ [k k ]2) ~ 2I< Lt Nx Lt [Ul - Xl] + N Lt Ul - ql + Lt.Ar grC·) (3.l.1) 
k=l IESx Q lESQ r 
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where uf denotes the l-th neuron's activity when processing the k-th training sample, gr ( . ) 
reflect network design considerations related to specific applications e.g., manipulability, 
andAr denotes the Lagrangian multiplier corresponding to the r-th application or design 
requirement. The proposed objective function includes contributions from two sources. 
Firstly, it enforces the convergence of every neuronal state in Sx and SQ to attractors 
corresponding to the presented end-effector task coordinates and joint coordinates respec­
tively, for every sample pair in the training set. Secondly, it exploits some of the structural 
redundancy to optimally satisfy auxiliary design criteria e.g., motion-time of joints, opera­
tional ranges, manipulability, torque optimization, etc. We now proceed with the formal 
derivation of the learning equations (time evolution of the synaptic weights) by minimizing 
the energy function given in eqrt. (3.1.1). 

In the past, several neuromorphic algorithms have been proposed for constrained mini­
mization of non-convex energy functions. For details the reader may refer to Hopfield and 
Tank [12], Barhen et al [2] and Platt and Barr [21]. In order to motivate and distinguish 
our optimiz!ltion approach from the existing techniques, we first briefly examine some of 
the features which limited the general applicability of previous approaches. Hopfield and 
Tank's method for the Traveling Salesman problem [12] involved the minimization of an 
energy function of the type, 

E = feu) + I: Wr [gr(uW (3.1.2) 
r 

A first difficulty with this model is that the specific constraint strengths, W r , were determined 
heuristically, i.e., by "anecdotal exploration". Furthermore, the adopted penalty function 
construction was known to easily lead to constraint violation. Also, as the dimensionality 
of constraints increases the constraint strengths get harder to set [21]. A recently proposed 
alternative, i.e., Platt and Barr's Basic Differential Multiplier Method, [21], alleviates some 
of these limitations by modifying the objective function to 

(3.1.3) 
r 

where Ar denote the Lagrange multipliers corresponding to the constraints gr( u) = O. A 
straightforward ( but naive) application of Lyapunov's stability requirements, ( i.e. E < 0 
), would result in the following equations of motion: 

and 

aE 
aUi 

~r = 

= _ af _ '" Ar agr(u) 
au' ~ au' 

• r I 

(3.1.4) 

(3.1.5) 

However, for some pathological cases the above algorithm could result in Ar -+ 0, i.e., 
the constraints might no longer be satisfied. Hence, Platt and Barr suggested the following 
heuristic change : 
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(3.1.6) 

Notice that their proof of correctness upon inclusion of the above heuristic is based on 
assumptions which are extremely restrictive in nature. Specifically, the necessary condition 
to achieve stability requires establishing equivalence to a damped mass system, which in 
itself is a nontrivial mathematical exercise. In contrast ( see below) , the methodology we 
propose, guarantees rapid convergence for arbitrary problem situations. 

Lyapunov's stability criteria require an energy function to be monotonically decreasing 
in time. Since in our model the internal dynamical parameters of interest are the synaptic 
interconnection strengths Tnm and the Lagrange multipliers An this implies that 

E = ""' oE . + ~ oA Ar < 0 
r r 

(3.1.7) 

One can choose 
oE 

(3.1.8) 

where TT is an arbitrary but positive time-scale parameter. Then substituting in Eqs. (3.1.7) 
we have 

< TT T EB T. 

In the above expression EB denotes tensor contraction, i.e., 

T EB T == L L T;j Tij 

j 

This will be true a fortiori if for some () > 0, 

""' . oE .. 
~ Ar oA + () < TT T EB T. 

r r 

(3.1.9) 

The equations of motion for the Lagrange multipliers Ar must now be constructed in such 
a way that Eq. (3.1.9) is strictly satisfied. Noting that the analytic expression for the energy 
function results in g~ = 9r(-), we adopt the following model: 

. TEBT - () 
Ar = TT () 9r(') 

9 EB 9 + 
(3.1.10) 

where 9 EB 9 == L:r 9r(') 9r(')' and () is an arbitrary positive constant. It is easy to see 
that i; < 0 is then strictly satisfied. 

Now we can proceed with the formal derivation of the learning equations. On differen­
tiating (3.1.1) with respect to Tnm we get 
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aE 
OTnm 

= ~ L {_I_ L [uf - xf] auf 
K k Nx lESx aTnm 

. 1 '" [k k J\TQ'" ag rk 1 auf } + 1\1 W u, - q, + H, w 
HQ lESq r au, aTnm 

(3.1.11) 

If we define, 

qf + NQ'Er~] ifl E sQ 
I 

ifl E SH (3.1.12) 
x~ 1 if 1 E Sx 

we can rewrite (3.1.11) as 

(3.1.13) 

where the index I is defined over the entire set of neurons. Equations [3.1.8, 3.1.12 and 
3.1.10] constitute a dissipative nonlinear dynamical system, the flow of which generally con­
verges to a manifold of lower dimensionality. Our initial effort described in this article 
focuses on convergence to point attractors, i.e., state-space vector locations where infor­
mation of interest is stored. Of crucial importance is to know how stable those attractors 
are and how fast they can be reached. In this vein, we first briefly review a novel concept 
in nonlinear dynamical systems theory, the terminal attractor , and its properties, that 
subsequently will enable us to formalize neural network algorithms for learning the inverse 
kinematics mapping. 

Hopfield and others [12,16] have shown that artificial neural networks store memory 
states or patterns in terms of the fixed points of the network dynamics, such that initial 
configurations of neurons in some neigh,borhood or basin of attraction of that memory 
state will be attracted to it. But the static attractors considered so far in nonlinear dy­
namical system formulations in general, and in neural network models in particular, have 
represented regular solutions of the differential equations of motion as shown in figure 3( a). 
The theoretical relaxation time of the system to these "regular attractors" can theoretically 
be infinite, and they suffer from convergence to spurious states and local minima. The con­
cept of terminal attractors in dynamical systems, was initially introduced by Zak [27], 
to obviate some of the above limitations, thereby significantly improving the performance 
characteristics of associative memory neural network models. 

The existence of terminal attractors was established by Zak using the following argument. 
At equilibrium, the fixed points, p, of an N-dimensional, dissipative dynamical system 

Ui + fi(Ul, U2, ,"', UN) = 0 i = 1, 2, "', N (3.1.14) 
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are defined as its constant solutions UOO(p). If the real parts of the eigenvalues, 'T]p. of the 

matrix Mij = [~(p)] are all negative, i.e., Re {'T]p.} < 0 then these points are globally 

asymptotically stable [4]. Such points are called static attractors since each motion along the 
phase curve that gets close enough to p, i.e., enters a so called basin of attraction, approaches 
the corresponding constant value as a limit as t -+ 00. An equilibrium point represents a 
repeller if at least one of the eigenvalues of the matrix M has a positive real part. Usually, 
nonlinear neural network deal only with systems which satisfy the Lipschitz conditions, i.e., 
I a Ii / au j I < 00 This condition guarantees the existence of a unique solution for each 
of the initial phase space configurations. That is why a transient solution cannot intersect 
the corresponding constant solution to which it tends, and therefore, the theoretical time 
of approaching the attractors is always infinite. Fig. 3(a) shows the temporal evolution to 
such an attractor. 

In contrast, Zak's [27] notion of terminal attractors is based upon the violation tl;te of 
Lipschitz conditions. As a result of this violation the fixed point becomes a singular solution 
which envelops the family of regular solutions, while each regular solution approaches 
the terminal attractor in finite time, as displayed in figure 3(b). To formally exhibit a 
terminal attractor which is approached by transients in finite time, consider the simplest 
one-dimensional example: 

(3.1.15) 

This equation has an equilibrium point at u = 0 at which the Lipschitz uniqueness condition 
is violated, since 

du = __ 1u - 2/ 3 

du 3 
--+ -00 at u --+ 0 (3.1.16) 

Since here the Re {'T]} --+ -00 < 0 this point is an attractor with "infinite" local sta­
bility. As a consequence the dynamical system is bestowed with "infinite attraction power", 
enabling rapid clamping of neuronal potentials to the fixed points; in our case this implies 
immediate relaxation to the desired attractor coordinates, XI and ql. Also the relaxation 
time for the solution corresponding to initial conditions u = Uo to this attractor is finite. 
It is given by 

1'" -+ 0 d 3 U 2/3 
to = - 113 = -2 Uo < 00 

Uo u 
(3.1.17) 

i.e., this attractor becomes terminal. As shown in Fig. 3(b), it represents a singular solution 
which is intersected by all the attracted transients. In particular, static terminal attractors 
occur for k = (2n + 1)-1 and n ~ 1, while for k = 2n + 1 all attractors are regular. It 
has been shown (Zak [27]) that that incorporation of terminal attractor dynamics leads to 
the elimination of all spurious states. This property is critical to providing an accurate gen­
eralization ability, since it ensures that no interpolation is performed over false attractors. 
For details on implication of terminal attractor dynamics for neural learning algorithms 
see [3,27]. In our proposed neuromorphic framework, terminal attractor dynamics then 
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provides a mechanism that can implicitly exploit the time-bounded terminality of phase tra­
jectories and the locally infinite stability, thereby enabling an efficient and accurate solution 
to the manipulator inverse kinematics. 

3.2 Adaptive Conservation Equations 

To capture the emergent invariants of the inverse kinematics relationship we consider 
a fully connected neural network, defined by the following system of coupled differential 
equations 

TUU~ + u~ = 'P-y [L Tll'ut 1 - It (3.2.1) 
/' 

Here Uz represents the mean soma potential of the lth neuron ( u~ is the neuron's activity 
when processing the kth training sample ), Til' denotes the synaptic coupling from the l'-th 
to the l-th neuron, and It captures the input/output contribution in a terminal attractor 
formalism. Though It influences the degree of stability of the system and the convergence 
to fixed points in finite time, it does not further affect the location of existing static attractors. 
In eqn. (3.2.1), 'P-y(') denotes the sigmoidal neural response function with gain,,; typically, 

'P-y(z) = tanhC/'·z). 

In topographic maps, NT neurons are generally used to compute a single value of interest 
in terms of spatially-coded response strengths. Here we use the simplest possible model 
(where NT = 1), but encode the information through terminal attractors. Thus, the 
topographic map is given by 

if 1 E Sx 
if 1 E SH 
if 1 E SQ 

(3.2.2) 

where x~ and qf are the attractor coordinates provided by the training sample, to be 
denoted for brevity as a~. Our basic operating assumption for the dynamical system defined 
by (3.2.1) is that at equilibrium, for I = 1, .. ,N : 

and Un ----+ an 

This yields the fixed point equations : 

(3.2.3) 

In associative memory applications, these equations can in principle be used to de­
termine the synaptic coupling matrix T, resulting in each memory pattern being stored 
as a fixed point. The key issue is that some of these fixed points may actually be re­
pellers. The terminal attractors are thus used to guarantee that each fixed point becomes 
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an attractor, i.e., spurious states are suppressed. Here however, we are in the process of 
learning a mapping between two spaces and as indicated in Fig. 2, attractor coordinates 
have been defined for only two of the three topographic regions of the network, i.e., the 
input set Sx, and the output set SQ. Consequently, the fixed point equation a = 'P(Ta) 
may not necessarily be defined, since for ISH I > 0, {an I n E S H} are not defined, 
and cannot be used for directly computing T. 

This necessitates the development of an alternative strategy, whereby "virtual" attractor 
coordinates are first determined for the hidden units. These coordinates are virtual since 
they correspond to a current estimate T of the synaptic connectivity matrix. This is achieved 
by considering the fixed point equations as adaptive conservation equations which use 
the extra degrees of freedom made available by the hidden neurons in S H. Let { U j = 
aj I j E SH} denote the virtual attractors to which the unknowns, {Uj I j E SH} 
are expected to converge to. Then at equilibrium, Eqs. (3.2.3) yield 

cp-I(Xi) = L . Tii'Xi' + L Tij'Uj' + LTil,ql' Vi E Sx 
i'ESx j'ESH I'ESQ 

-Ie) 'P Uj = L Tji'Xi' + L Tjj'uj' + LTjl,q/, Vj E SH 
i'ESx j'ESH I'ESQ 

'P-1(ql) = L T/i'Xi' + L Tlj'uj' + L TlI'ql' VI E SQ (3.2.4) 
i'ESx j'ESH I'ESQ 

where Tjl denotes the current estimate of synaptic coupling from lth neuron to the jth 
neuron, and Uj represents a virtual attractor whose value is isomorphic to the current level 
of knowledge in the network. Now define, 

.,pi = 'P-I(Xi) L T;i,Xi' LTil,ql' Vi E Sx 
i' I' 

.,pj = LTji,Xi' + LTj/,ql' Vj E SH 
i' I' 

.,pI = 'P-I(XI) LTli,Xi' LTI/,q/, VI E SQ. (3.2.5) 
i' I' 

Then consistency with the terminal attractor dynamics assumptions requires that { Uj 
j E S H } be simultaneous solutions to the following "conservation" equations 

L Tij,Uj' = .,pi Vi E Sx 
j'ESH 

-Ie) 'P Uj - L Tjj'Uj' = .,pj Vj E SH 
j'ESH 

L T/j'Uj' = .,pI VI E SQ (3.2.6) 
j'ESH 
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The above system of equations for U is generally overdetermined. A number of standard 
algorithms exist to obtain a good approximate solution to such a system. In our imple­
mentation we use an iterative approach (e.g. conjugate gradient descent) to minimize the 
function 

E 1 
L ( ~i - L, T;jlujl ) 2 

1 
( Uj - <p[ LTjj'uj' ~j ] ) 2 

2Nx + 2NHL + 
, J J j' 

1 
L ( ~I - L TljlUj' r (3.2.7) + --

2NQ 
I j' 

We can now return to the computation of 8u~ / 8Tnm in Eq. (3.1.12). Let us define 

and denote 
I 

<Plk 
8<p(' ) 
8 k . 

zi 

Then at equilibrium, as u~ ----+ 0 and If ----+ 0, we have 

I [" 8TI/I k " 8u ~ 1 <Plk L....J 8T, UI' + L....J TI/I ~ 
I' nm I' nm 

which can be rewritten as 

" [ i: I ] 8uf, I i: k L....J UI/' - <Plk TI/' 8Tnm = <PlkUlnUm 
I' 

(3.2.8) 

(3.2.9) 

(3.2.10) 

(3.2.11) 

In the above expression Oij denotes the Kronecker symbol. We now define, following 
Pineda [20], a weighted coupling matrix 

(3.2.12) 

Then, substituting (3.2.12) in (3.2.11), and premultiplying both sides with [A -1] ~I and 
summing over l yields 

"[A-l]k I i: k = L....J nl <Plk Uln Urn' (3.2.13) 
I 

Carrying out the algebra, and relabeling the dummy indices results in : 

[A-l]k I k = In <Pnk Urn' (3.2.14) 
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The above expression can now be substituted in Eg. (3.1.12); the learning equation thus 
takes the form 

rTTnm = - LL n [A- I ]~n <P~k u~ (3.2.15) 
I k 

where the indices 1 and k run over the complete sets of neurons and training samples. 

3.3 ADJOINT DYNAMICS 

A computation of the synaptic interconnection matrix as suggested by Eq. (3.2.15) would 
involve a matrix inversion. Since direct matrix inversion is typically nonlocal, we adopt the 
relaxation procedure suggested by Pineda [20] to compute the synaptic updates defined by 
(3.2.15). Consider the following change of variable 

'" [ A-I ]k J'k , = ~ In I <Pnk (3.3.1 ) 
I 

Then substituting (3.3.1) in (3.2.15) we have 

(3.3.2) 

One can also use the explicit form of A~p from (3.2.12) and by substitution in (3.2.15), we 
obtain 

k 

'" Ak Vn = 
~ np , 

n <Pnk n 

k , T vn 
<Pnk np -,-

<Pnk 

(3.3.3) 

Regrouping the previous equations (3.3.2) and (3.3.3), and relabeling the dummy indices 
yields 

V k = ' [ '" T k + J'k 1 n <Pnk' ~ pnvp n' (3.3.6) 
p 

We see that v~ represents a fixed point solution of an "adjoint" neural network having the 
following coupled dynamics 
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(3.3.7) 

Recall that if was defined in Eq. (3.2.2). By comparing Eqs. (3.2.15, 3.3.1·and 3.3.7) we 
see that the resulting neural learning equations couple the terminal attractor dynamics for 
u~ with the adjoint dynamics for v!, i.e., 

The complete algorithm is summarized below. 

SUMMARY OF LEARNING ALGORITHM 

[0] Initialize T , ~ 
[1] Learn T: iterate IT = 1, .. , NIT 

[1.0] Loop' over training samples, k = 1, .. , K 
[2] Initialize uk, 'Uk 

[2.1] Estimate virtual attractors,{uj I j E SH} from 
conservation equations (3.2.6) 

[2.2] Evolve uk for inverse mapping xk ==} fl using terminal 
attractor dynamics (3.2.1)-(3.2.2) 

[2.3] Compute vk using the adjoint network (3.3.7) 
[2.4] Store outer product uk 1\ v k increment 
[2.5] Enddo {k} 

[1.2] Update Tusing Eq. (3.3.8) 
[1.3] Update ~ using Eq. (3.1.10) 
[1.4] Check for convergence: 

If yes then exit else go to [1] 
[1.5] Enddo {IT} 

[2] exit 

4. SIMULATION AND RESULTS 

(3.3.8) 

The neural learning framework developed in the preceding section was applied to a 
planar 3-degree of freedom redundant manipulator and to a spatial 7-degree of freedom 
human-arm like manipulator. Though either of the manipulators encompasses configura­
tions which exhibit sufficiently the problematic complexity presented by the inverse kine­
matics mapping, we experimented with both examples for a variety of reasons. The 3-
DOF planar manipulator was primarily used to ascertain the algorithmic correctness of our 
terminal-attractor-based neural learning algorithm. It provided benchmarks for compari­
son with the existing backpropagation based neural network solutions [10,14,24], in terms 
of number of training iterations and training samples needed to stabilize the network, es­
timates on the number of synaptic elements or neurons required to successfully capture 



www.manaraa.com

195 

the inverse mapping and the accuracy of recalled or "generalized" joint configurations cor­
responding to the input end-effector coordinates. Though backpropagation-based neural 
networks can be applied to planar redundant manipulators with 3-DOF, they failed to 
scaleup to cases involving seven or more joints. Their practical applicability would thus ap­
pear to be severely limited for kinematic control of most industrial robot manipulators. We 
also empirically analyzed the robustness and computational speed of our artificial neural 
system on a 7-DOF redundant manipulator to illustrate its efficacy as a viable, real-time 
alternative to the existing quantitative techniques [9,8,15,18,25]. To provide a context for 
the subsequent analysis we precede our discussion on the simulation results with a brief 
description of each candidate manipulator. 

The continuous-time, dynamical training procedure was simulated using parameters cor­
responding to a constrained configuration of the six-jointed PUMA 560 industrial robot. 
By suppressing the motion of the shoulder, elbow and the wrist joints, the PUMA robot 
arm was restricted to motion in a vertical plane only. Figure 4(a) illustrates the worst-case 
n<ormalized behavior of the state variables and the synaptic elements during the learning 
phase, as the neural network acquires the inverse mapping. Figure 4(b) shows the conver­
gence of the output neurons to the presented attractors during the learning phase for a 
particular sample. When learning has stabilized over all the training samples the network 
switches to its operational mode. Figure 5(a) displays the normalized convergence behavior 
of the neuronal activity, u as the network generalizes the joint angles in response to arbi­
trary cartesian inputs. Figure 5(b) illustrates the convergence of interpolated joint angles. 
Notice the rapid rate of convergence in computing the joint configuration as juxtaposed to 
conventional techniques. . 

In addition, the dynamical training algorithm was applied to learn the inverse kinemat­
ics transformations for Hemami's simplified 7-DOF manipulator formulation [11] of the 
human-arm. The following joint motions are available :the joint ()l provides back and forth 
motion about the shoulder, ()2 provides effector elevation in the vertical plane, ()3 enables 
rotation around the upper-arm axis, while ()4 provides the elbow motion, ()5 is around the 
forearm axis and ()6 and ()7 lead to the pitch and yaw motions of the wrist, respectively. 
Details on the geometric parameters, namely link length, twist angle, joint limits and off­
sets may be found in [11]. Forward kinematics equations ( see Paul [19]), were used to 
generate training samples of end-effector and joint-space coordinates over the workspace 
volume of the robot. Figure 6(a) displays the normalized, worst-case temporal behavior of 
state variables u, i.e., max" n 1 (u~H ~ u~)/u~ I, adjoint variables v and the synaptic 
elements, T, during the learning phase. Figure 6(b) shows the variation in activity at the 
output neurons during the learning cycle corresponding to one of the training pairs being 
presented to the network. Note that the system learns the inverse mapping in a few hun­
dred iterations only, as compared to the several million iterations required by the gradient 
descent-based backpropagation algorithm. The computational efficacy of our neuromor­
phic learning algorithm may be estimated from the rate of variation in network activity 
during the operational phase of the network as shown in figures 7 (a) & (b). As depicted 
in Fig. 7 (a), once the network has acquired the inverse transformations, it may be used to 
recall or generate the joint angles needed to achieve any arbitrary end-effector coordinate, 
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within the workspace of the manipulator, in very few dynamical iterations. The detailed 
results of this study will be reported elsewhere. 

5. CONCLUSIONS 

In this paper we have attempted to address a complex and important problem in robotics 
research, which enables the enhancement of manipulative capability and reliability. Our 
novel learning paradigm for neural network models, based on the terminal attractor con­
cept, is shown to be computationally competitive with iterative methods currently used in 
robotics to solve the inverse kinematics of redundant manipulators. The neuromorphic 
framework is expected to facilitate the development of robust real-time algorithms for 
computing joint configurations to achieve arbitrary end-effector trajectories. In addition, 
this strategy does not appear to suffer from non-cyclicity of motion, as encountered in the 
pseudo-inverse resolution techniques [13,15,6] or the algorithmic singularities common to 
augmented task approaches [9]. Furthermore, unlike the feed forward, backpropagation 
neural learning approaches, the adaptive dynamical system formulation presented here, 
provides the flexibility for incorporating arbitrary combinations of kinematic optimization 
criteria, without imposing high computational overheads. Two options are available for 
including the redundancy resolution criteria in the algorithm to resolve the nonuniqueness 
of joint configurations that may satisfy a given end-effector configuration. The constraints 
may either be included a priori , i.e., while generating the training samples themselves, 
thereby forcing the network to learn only limited aspects of inverse kinematics mapping 
with a bias towards a particular criterion; or they could be selectively applied in real-time 
to an operational version of the network (trained to encode the emergent invariants of the 
inverse kinematic mapping), to regularize the solutions (i.e. provide unique best answers ). 
In addition, it was found that this strategy scales-up to configurations of practical interest, 
where conventional neural learning techniques, e.g., back propagation appear to fail. 

Despite the emphasis on real-time performance, the dexterous nature of applications 
envisaged for the next generation robots impose uncompromising demands on the resul­
tant end-effector trajectory. Consequently, this entails the generation of intermediate joint 
angles with a high degree of precision, currently achievable only through off-line program­
ming techniques (e.g acceptable error tolerances are less than 0.05%). In this context, 
our future directions for research include development of true neural topographic map 
techniques, enabling the much higher resolution needed to achieve the desired precision in 
interpolated joint angles. 
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Dl-posedness of inverse problem q = 4)-I(i) : no 
solution (from i 1 ); non-unique solution (from %2 ) 

• 

• 
Hidden neurons 

• 
• 

• • 

Topographic terminal attractor map for the fully connected 
neural network model. 
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u3 u = 0 - Regular attractor 
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u3 

u1 
u = (1 • Terminal attractor 

u2 

(a) asymptotic relaxation of regular attractors, (b) 
terminal attractor as a singular solution 
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Abstract 

This paper proposes a restructurable architecture based on a VLSI Robotics Vector Processor 

(RVP) chip. It is specially tailored to exploit parallelism in the low-level matrix/vector operations 

characteristic of the kinematics and dynamics computations required for real-time control. The 

RVP is comprised of three tightly synchronized 32-bit floating-point processors to provide 

adequate computational power. Besides adder and multiplier units in each processor, the RVP 

contains a triple register-file, dual shift network and dual high-speed input/output channels to 

satisfy the storage and data movement demands of the computations targeted. Efficiently 

synchronized multiple-RVP configurations, that may be viewed as V ariable-Very-Long-Instruc­

tion-Word (V2LIW) architectures, can be constructed and adapted to match the computational 

requirements of specific robotics computations. The use of the RVP is illustrated through a 

detailed example of the Jacobian computation, demonstrating good speedup over conventional 

microprocessors even with a single RVP. The RVP has been developed to be implementable on 

a single VLSI chip using a 1.2 ~m CMOS technology, so that a single-board multiple-RVP system 

may be targeted for use on a mobile robot. 
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1. INTRODUCTION 

Many robotics control algorithms are not implementable in real time on state-of-the-art 

microprocessors due to their severe computational needs. Use of hardware parallelism and 

specialization of hardware are two attractive approaches to improve the performance of such 

computationally intensive algorithms. In fact, hardware accelerated performance enhancement 

may be absolutely essential for real-time dynamic control of multiple closed-chain systems such 

as multi-manipulators and multi-legged vehicles to be feasible, due to their demanding compu­

tational requirements. This paper presents a design for a VLSI Robotics Vector Processor 

tailored to exploit the low-level parallelism in the matrix/vector operations that are characteristic 

of the kinematics and dynamics computations required in robotics control. 

The improvement of performance through use of parallelism and through hardware speciali­

zation has been considered by others. Multiprocessors have been used to speed up robotics 

control computations for the Utah/MIT hand [1], for robotic manipulator control at Stanford [2] 

and for control of a hexapod walking machine at the Ohio State University [3]. Multiprocessors 

have also been considered extensively for speedup of the Inverse Dynamics computation for 

robot manipulators [4-6]. Their use has mostly been targeted at the exploitation of coarse-grained 

parallelism, as opposed to fine-grained parallelism, due to the significant overhead incurred 

when attempting to utilize parallelism at the lowest level with general-purpose machines. 

Parallel algorithms have been devised for specific robotics control algorithms, for example, 

Inverse Dynamics [7,8], the Jacobian [9] and the Inertia Matrix [10]. These endeavors have 

focussed primarily at transforming conventional sequential algorithms for these computations 

into a parallel form that exhibits greater concurrency. The design of these algorithms has usually 

been coupled with the derivation of an appropriate processor interconnection/data synchroniza­

tion scheme to effectively exploit the structural regularity typically exhibited by the algorithms. 

The decreasing cost of hardware and the tremendous potential of application-specific VLSI 

integrated circuits has prompted considerable interest in specialized architectural designs at the 

circuit boardNLSI chip level [11-15]. A board level design of a robotic processor is outlined in 

[11] and is targeted at the low-level parallelism available in the matrix/vector operations of 

Inverse Kinematics and Inverse Dynamics, to give an order of magnitude speedup over state-of­

the-art systems. A specialized VLSI chip for solution of Direct Kinematics is described in [12], 

using fixed-point arithmetic for the computations. A floating-point VLSI robotics processor was 

developed in [13] and was used as a processing element in systolic architectures for the Jacobian 
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and Inverse Dynamics computations. Specialized architectures have been directed to speedup of 

Inverse. Kinematics through use of a robust numerical algorithm and off-the-shelf floating-point 

unit in [14] and with a closed-form solution and VLSI CORDIC processors in [15]. 

In [16], a layered architectural framework was proposed to effectively exploit parallelism at 

multiple levels in robotics control computations. The multiprocessor architecture was built 

around a Robotics Vector Processor (RVP) chip. In this paper, the architecture of the RVP will 

be described in detail. Its arithmetic units, interconnection structure, and instruction set are 

specialized so as to efficiently compute the three-dimensional spatial quantities required. It also 

has an appropriate input/output interface to permit interconnection of tightly synchronized sets 

of processors, resulting in an architecture similar to that of Very-Long-Instruction-Word (VLIW) 

architectures [21]. The inter-RVP communication mechanism is made flexible so that multiple­

RVP systems are restructurable into different configurations to suit the requirements of specific 

robotics computations. 

Even though high-performance floating-point adders/multipliers with an approximate 10 

Mflops performance are now commercially available, and may appear to provide the computa­

tional power required, the realized performance when incorporated into a general-purpose 

workstation (e.g. Sun 3) is considerably less than the potential peak performance. The exploita­

tion of the high "raw" performance of these ALU's for robot kinematics and dynamics 

computations would require a carefully tailored architecture of the system built using them, 

addressing the critical issues of data movement and execution control. The need for a specialized 

architectural design is especially pronounced in the context of a high-performance robotics 

multiprocessor, such as the one proposed in [16]. Therefore, the emphasis in this paper is the 

architectural design of a system with adequate computational power, along with the appropriate 

input/output and control structures that are essential to avoid loss of computational power in 

practical application. 

The paper is organized as follows. Section 2 describes the nature of potential parallelism in 

robot kinematics and dynamics computations and motivates the architectural approach pursued 

here. In Section 3, the architecture of the Robotics Vector Processor and its base instruction set 

are described. Section 4 discusses how fine-grained parallelism is exploited through the efficient 

implementation of matrix/vector operations, such as the vector cross product and matrix-vector 

multiply, using the base instructions of the processor. The issue of overlapped execution of 

matrix/vector operations is treated and the implementation of an example robotics computation, 

the Jacobian, is detailed. Section 5 elaborates on the use of multiple tightly coupled RVP's to 

effectively implement a restructurable V ariable-Very-Long-Instruction-Word-Processor 
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(V2LIWP) for achieving higher performance through further exploitation of parallelism in 

robotics computations, again using the Jacobian as an example. Section 6 concludes the paper 

with a summary of the work. 

2. PARALLELISM IN ROBOTICS COMPUTATIONS 

Robot kinematics and dynamics computations have considerable potential for parallel 

execution. Though the potential parallelism is easily identified, its actual effective exploitation 

is nontrivial. Besides use of sufficient number of arithmetic units to satisfy the computational 

demands, appropriate tailoring of the hardware for input/output and control is essential. In this 

section, we identify different levels at which parallelism is available in robotics computations. We 

then motivate an architectural approach that aims at being efficient in exploiting maximal 

parallelism while simultaneously maintaining flexibility to be restructurable so as to adapt to the 

requirements of a wide variety of robotics computations. 

At the highest level, a robotics control scheme can be represented in terms of generic 

computational blocks, such as for the Jacobian, Inverse Dynamics etc., with potential inter-block 

level parallelism in the execution of two or more of these blocks [17]. Each generic computational 

block can be expressed in terms of a number of identical or similar subcomputations, often one 

for each of the links of the robotics system being modeled. Parallelism is thus available at the 

intra-block level. Such a subcomputation can be further broken down and expressed in terms of 

matrix/vector operations on 3x 1 vectors and 3x3 matrices [18]. At this matrix/vector operation 

level, there typically is potential for parallelism in the execution of independent matrix/vector 

operations comprising the higher level subcomputation. Finally, there is obvious potential for 

parallel execution at the primitive operation level, of operations that comprise a matrix/vector 

operation. For example, multiplication of two 3x3 matrices requires 27 multiplications and 18 

additions, where all the multiply operations are completely independent and potentially execut­

able in parallel. 

Thus the very same computational algorithm can be viewed in terms of tasks, or operations 

at different levels of granularity. This can be captured using a task graph [5,9,15], where vertices 

of such a task graph represent computations and directed edges between tasks denote data flow 

and implied precedence in scheduling. In utilizing any general-purpose mUltiprocessor to 

implement such a computation, the appropriate choice of granularity of the task graph will 

typically be dictated by a compromise between the degree of parallelism desired and the execution 

overheads that result from task scheduling and interprocessor communication/synchronization. 
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The finer the granularity of the chosen tasks, the greater is the degree of potential parallelism, 

making load-balancing easier and processor-utilization higher. However, the greater degree of 

parallelism is often obtained at the cost of higher task scheduling overhead and the need for 

increased data movement and more frequent interprocessor synchronization. The degree of 

parallelism that is effectively exploitable using any currently available asynchronous general­

purpose multiprocessor is thus limited [19]. 

An approach that overcomes the above problems of asynchronous multiprocessors is the use 

of systolic architectures [20]. Since systolic architectures are synchronous systems, task sched­

uling and interprocessor synchronization are implicit and involve no overhead. Further, all data 

movement is explicitly factored into the design, so that only controlled neighbor-to-neighbor 

communication is required. Thus fine-grained parallelism is exploitable, and the design is 

typically scalable with the number of degrees of freedom of the robotics system modeled. 

However, there are drawbacks to the systolic approach. Different generic computational blocks 

may require different systolic architectures for their solution, and systolic solutions are not 

appropriate or available for all robot kinematics and dynamics computations. Further, systolic 

architectures generally pipeline the computations they implement and significant improvements 

to the pipeline initiation rate (throughput) of the computation are achieved, but the latency of 

execution may not be decreased very much [9,10,15]. 

Most robot kinematics and dynamics computations are conditional-free, i.e. the sequence of 

operations at the lowest levels is not a function of the input: data from the sensors. Thus, a one­

time analysis of the computation is sufficient for the purpose of partitioning the computation 

amongst the processors of a multiprocessor. Further, if the multiprocessor system is tightly 

synchronized, where all processors execute under lock-step control, the conditional-free nature 

of the robotics computation makes it feasible to use implicit interprocessor synchronization. Thus, 

of the three sources of execution overhead in exploiting fine-grained parallelism in robotics 

computations with an asynchronous multiprocessor, namely dynamic task scheduling, inter­

processor synchronization and data movement, the first two can be easily eliminated by using a 

tightly coupled mUltiprocessor system. However, viewing the total computation as a task graph 

at the primitive operation level can pose a problem with respect to the data movement required. 

Though an analysis of the available parallelism in a task graph at the primitive operation level is 

relatively straightforward, and heuristics for effective load-balanced scheduling of task graphs on 

parallel processor systems have been proposed [4,5], the data-movement costs can become 

comparable or even dominate the computational cost. Minimizing the data movement costs 

requires a design of the interprocessor communication structure that matches the structure of data 

communication required by the algorithm, but there is little recognizable structure in the data 
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movement pattern of a robotics computation represented at the primitive operation level. Thus, 

despite the greater potential parallelism in viewing the computation at the primitive operation 

level, the difficulty in effectively exploiting it in practice motivated the use of a two-level 

approach pursued in this work. 

In summary, the regular, local communication and tight synchronization of the systolic 

approach make it highly efficient but relatively inflexible whereas the attributes of asynchronous 

multiprocessors that make them flexible also cause them to suffer relatively high execution 

overhead. The architectural approach pursued here attempts to simultaneously achieve efficien­

cies comparable to the systolic approach as well as flexibility closer to asynchronous multiproces­

sors. This is attained by exploiting the conditional-free nature of robotics computations and 

adopting a two-level architectural viewpoint. A small number of tightly synchronized arithmetic 

units coupled together by a specially tailored data section constitute the basic building block, a 

single chip Robotics Vector Processor (RVP). The specialized design of the RVP facilitates 

efficient exploitation of fine-grained parallelism in executing computations at the level of matrix! 

vector operations. Higher level computations are expressed as task graphs with matrix/vector 

operations as the constituent tasks. Such task graphs can then be scheduled onto multiple-RVP 

configurations. Viewed thus as task graphs at the matrix/vector operation level, the amount of 

inter-task data movement required is relatively small compared to the amount of intra-task data 

movement and hence not critical in determining overall data communication efficiency. The inter­

RVP connection mechanism is therefore made very flexible so as to make these multiple-RVP 

configurations restructurable to suit the requirements of specific computations. The architectural 

details of the basic building block, the Robotics Vector Processor, are presented next. 

3. THE ROBOTICS VECTOR PROCESSOR (RVP) 

3.1 Architecture of the RVP 

The Robotics Vector Processor (RVP) is a single-chip processor tailored to the efficient 

execution of 3xl vector / 3x3 matrix operations. Fig. 1 shows the block level architecture of the 

RVP. It contains three floating-point processors (FPP's) for performing arithmetic operations. 

The three FPP's operate in a lock-step SIMD (Single-Instruction-Multiple-Data) mode, thus 

controlled by a single controller. The controller initiates execution of an externally supplied 

vector instruction every clock cycle. Each FPP has an associated register-file so that intermediate 

quantities in a vector computation can be retained on-chip and avoid large off-chip data movement 
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costs. A dual shiftlbroadcast network (SBN) is used to facilitate communication between the 

FPP' s, and is especially usefulin implementing vector operations such as vector cross product and 

matrix-vector multiply. A dual input/output channel exists for communication of data values in 

and out of the RVP. It permits flexible interconnection of a number of RVP's, for example in a 

ring configuration, among others. 

Fig. 2 shows an FPP in greater detail. An FPP is comprised of a floating-point adder (FPA), 

a floating-point multiplier (FPM) and a register-file (RF). A dual-bus interconnects the register­

file and the floating-point units of an FPP. The RF contains 56 32-bit words and is interfaced to 

the other FPP units through a buffer. It is dual-port readable, but only single-port writeable, due 

to the design constraints in VLSI. Thus any two registers in the file may be read simultaneously 

using the two buses (BusA and BusB). During a write, however, only one register can be written 

into at a time, using either one of the two buses. Besides the registers in the RF, each FPP also has 

eight other special-registers, explained below, for a total of 64 registers. The size of the register­

file was determined by a chip-area vs. computational need trade-off. The chosen size is adequate 

for many robot kinematics and dynamics computations, as exemplified by the Jacobian compu­

tation discussed in detail later in the paper. 

A similar trade-off between chip-area and execution time was made in the design of the FP A 

and the FPM. The FP A uses a Manchester carry chain and carry lookahead and takes three cycles 

(prenormalization, add/subtract, followed by postnormalization) for an operation. The FPM takes 

5 clock cycles for a multiplication, and is designed as a two-stage pipeline with a 4-cycle first stage 

(four 6-bit sets of carry save multiplication for the mantissa) and a I-cycle second stage (carry 

propagate addition and exponent adjustment). Both floating-point units operate on 32-bit 

operands and use clamping for overflow/underflow, thus obviating the need to use interrupts and 

traps. 

Most robot kinematics and dynamics computations may be expressed in terms of 3x I vector 

operations on spatial quantities. A 3xI vector is stored in the RVP by distributing the three 

components among the three FPP' s. The RVP directly implements simple 3x I vector operations 

such as vector add, vector multiply and vector shift (pemmte). More complex vector operations 

such as vector dot product, vector cross product, matrix-vector multiply and matrix-matrix 

multiply are implemented as sequences of the basic vector operations. A simple vector operation 

such as a vector add is executable in parallel without inter-FPP data transfer, by keeping the 

corresponding components together in the same FPP. The result produced by the FPA may be 

written back into any register of the RF, or may be retained in a special output latch and used in 

a succeeding vector operation. The FPA 's output latch is thus treated as a special-register (R6) 
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whose contents may be input along either BusA or B usB, to be used as an input operand to a vector 

operation. Likewise, an output latch is provided for in the FPM, that is referenced as register R 7. 

Since in many cases (especially for performing matrix-vector multiply) the vector results of two 

successive vector multiply operations need to be added togetherlater using the FP A, an additional 

output latch is provided for in the FPM to hold its previous output. This delayed output register 

R7d has the same address as the (non-delayed) FPM output latch R7, but the former is only 

readable along BusA, whereas the latter can only be read on BusB as shown in Fig. 2. 

Communication of data values between the FPP's is accomplished using the dual SBN. 

Special registers R2 and R3 are used to perform data communication in the "shift" mode. Register 

R2 is loaded/read using BusA while R3 is accessed through BusB. A shift operation causes 

independent circular permutations (left or right as specified) of the 3x 1 vectors in R2 and R3. The 

simultaneous shifting of two registers facilitates the efficient implementation of the data 

movement required for implementing vector cross products. Registers R4 and R5 are "shadow" 

registers of R2 and R3 respectively, used to implement broadcast operations between the FPP' s. 

The component of R2 in FPPI is made visible as each of the FPP components of R4 through a 

multiplexor network. Thus implicit broadcasting of FPP l' s component of register R2 to all three 

FPP's is made possible. As a shadow register, R4 simply carries along FPPl's component of R2, 

and thus changes to R2 directly affect R4. In Section 4, the use of shiftlbroadcast operations in 

implementing a matrix-vector multiply operation is shown. 

Two independent 32-bit wide 1/0 channels, ChA and ChB, facilitate data transfer to/from the 

RVP. Each of these channels is associated with a special vector-register (RO and Rl respectively), 

that operates as a shift -register, with individual shift control bits in each RVP vector instruction. 

Output, say on ChA, is performed by loading the appropriate I/O shift-register RO, and shifting 

RO right three times. This causes the contents of the three component registers ofRO to appear on 

the data lines of ChA during execution of the three later instructions that specify the right shift of 

RO. Input on ChA is performed by shifting RO left three times, causing the inputs on the data lines 

of ChA to get shifted into the three components of vector-register RO. Thus, two 3xl vectors can 

be input/output in three clock cycles using the two I/O channels. The dual I/O channels are 

especially important in using several RVP's together in multiple-RVP configurations, as 

explained in Section 5. 

3.2 Instruction Set of the RVP 

The RVP is an SIMD (Single-Instruction-Multiple-Data) machine, with identical operations 

being performed in each of the three FPP' s at any cycle. Each instruction takes one or more clock 
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cycles to completely execute, but the controller (Fig. 1) performs an instruction initiation every 

cycle. An appropriate number of no-op instructions may need to be inserted into the instruction 

sequence to ensure proper synchronization between instructions and to avoid conflicts in their use 

of the functional units of the RVP. 

The RVP has only seven instructions (plus a no-op) and uses a format as shown in Fig. 3. The 

instruction set is designed to be simple but allow flexible control of all R VP components - the 

FPA's, FPM's, SBN, I/O Channels, register-files and dual-buses. The single FPP resource that 

is shared by the various component units is the dual-bus. The instructions may be classified on 

the basis of their use of this common resource. The bus is used to either i) transfer data from any 

special-register to the register-file, or ii) move data from a register (special-register/register-file) 

to one of the functional units. A single instruction Write File (WF) is used for the former (to move 

data into the register-file from outside it), while individual instructions (OUT, FPM, FPA, FPS, 

LSR) are available for the latter, serving in the case of the FPM/FP A functional units to also 

initiate the respective operation after data movement into the unit. 

The shift-registers associated with the I/O channels (ChA and ChB) have individual shift 

control bits (IOSa/lOSb) in each instruction, so that data in and out of the RVP chip can be 

controlled on each channel, independent of other data movement/functional unit control. This is 

especially important for synchronization in multiple-RVP configurations. Each I/O channel is 

also provided with two external control bits (IOCa/lOCb) that are simply gated to the external 

control lines of the channel (Fig. 1), for the purpose of controlling external I/O devices connected 

to the channel. Finally, a separate instruction, Shift (SH) is provided to control the shift-registers 

of the SBN. While individual shift control bits in each instruction for these shift-registers could 

also have been used, similar to that of the I/O shift-registers, this was not done so as to reduce the 

number of bits in an instruction, since the overall expected use of this function did not justify it. 

Since the number of addressable vector-registers is 64, each explicit register operand uses a 

6-bit address. A4-bitopcode is used (even though 3 bits will suffice) to make the instruction size 

a whole number of bytes. Each of the RVP instructions is elaborated on below: 

WF (Write register File): One of the seven special vector-registers (RO-R7) serves as the 

source and one of the vector-registers (R8-R63) in the register-file is the destination, so 

that data from one of the functional units may be stored in the register-file. Thus, when 

the source is ROlRl, input data received from ChA/ChB is moved into the register-file; 

when the source is R21R3(R41R5) data from the primary (shadow) registers of the SBN 

are stored; and if the source is R6(R7), the output result from an FP A(FPM) operation is 
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~ 
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Operation Rsa Rsb Rda Rdb 

WF 0-7 8-63 

FPA/FPS 8-63;O,2,4,6,7d 8-63;1,3,5,6,7 FPAa FPAb 

FPM 8-63;O,2,4,6,7d 8-63;1,3,5,6,7 FPMa FPMb 

OUT 8-63,O,2,4,6,7d 8-63,1,3,5,6,7 O,none 1,none 

LSR 8-63;O,2,4,6,7d 8-63;1,3,5,6,7 2,none 3,none 

c) Instruction Operands 

Figure 3. Robotics Vector Processor (RVP) Instruction Set 
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stored back into the register-file. Only one of the data buses is used during a WF and the 

operation takes one clock cycle to complete. 

OUT (OUTput data): This is an I/O instruction, used to transfer the contents of any of the 

vector-registers to the shift-registers ROlRl associated with the I/O channels. Data is 

loaded from source vector-register Rsa into special-register RO using BusA and simulta­

neously from Rsb into Rl using BusB, in the same clock cycle. During succeeding clock 

cycles, the data loaded into ROIRI is shifted out through ChA and ChB respectively, 

controlled by the explicit I/O shift-control bits IOSa/IOSb in those instructions. The source 

Rsa can be any register from the file (R8-R63), or any special-register accessible on BusA 

- RO, R2, R4, R6, R7d (Fig. 2). If the special-register RO is specified as the source, then 

output along ChA is disabled. This makes it possible to selectively disable overwriting one 

of ROIRI while the otber is loaded for output. Restrictions on Rsb are similar to those on 

Rsa, as shown in Fig. 3c. The RVP does not have an explicit IN instruction - the WF 

instruction serves to transfer data from ROIRI (previously shifted in from an input channel) 

to any ofthe registers of the file, and any of the other functional units can be directly loaded 

from ROlRl. 

FPA (Floating-Point Add): During the first clock cycle, source operands from registers Rsa 

andRsb are loaded and internally latched into the floating-point adder unit using BusA and 

BusE. The addition takes three further cycles and the result is latched into special-register 

R6, available using either BusA or BusE. The buses are thus used by an FP A operation only 

during the first cycle and are free during the last three cycles. The operand Rsa may be any 

register accessible along BusA - RO, R2, R4, R6, R7d or R8-R63, and Rsb may be any 

ofRl, R3, R5, R6, R7, R8-R63. Even though faster adder designs were possible, a three 

cycle design was chosen due to VLSI area constraints. 

FPS (Floating-Point Subtract): The operation is very similar to FPA, except that the data 

from Rsb is subtracted from that of Rsa. 

FPM (Floating-Point Multiply): As with the FP A and FPS operations, the input operands are 

transferred along buses BusA and BusB during the first clock cycle and internally latched 

within the multiplier. The multiplieris a two-stage pipe1ined unit. The first stage takes four 

cycles after the initial data transfer cycle. The second stage takes one cycle and at the end 

of this cycle the result is latched in vector-register R7. The previous result, that resided in 

R 7, is simultaneously transferred to register R7 d. The availability of the last two multiplier 

results in this manner is very convenient for implementing composite matrix/vector 

operations using the base vector operations, as shown in Section 4. 
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LSR (Load Shift-Register): This instruction is used to load the shift-registers of the dual 

SBN, the mechanism for inter-FPP data communication. Register R2 is loaded from 

source vector-register Rsa via BusA while R3 is simultaneously loaded from Rsb via 

BusB. As explained for the OUT instruction, selective disabling of one of the dual loads 

is accomplished by using R21R3 as the source for the register to be disabled. The shadow 

broadcast registers R4 and R5 in all three FPP's are automatically changed to be 

consistent with the contents of FPPI 's R2 and R3 registers, respectively. 

SH (SHift): The shift operation causes both the SBN shift-registers (R2,R3) to shift 

independently. The SBNa(SBNb) field in the instruction (Fig. 3b) specifies the shift 

mode - Right Circular (RC), Left Circular (LC) or No Shift (NS). Again, the broadcast 

operation is implicit after any shift - the broadcast registers R4 and R5 in all three FPP' s 

are automatically changed to be consistent with the contents of FPPl's R2 and R3 

registers, respectively, after the shift. 

Fig. 4 illustrates the timing characteristics of the various vector instructions and also serves 

to emphasize the great degree of overlapped operation possible within the RVP. The single 

common RVP resource that is shared by various instructions is the dual-bus, but as shown in Fig. 

4, considerable overlap in the execution of several instructions is nevertheless possible. The first 

instruction shows the timing sequence for an FPM. The instruction fetch (performed by a 

sequencer that drives the RVP, and hence shown lightly shaded) is followed by a read-register 

cycle where the input operands are fed via the buses and are internally latched within the 

multipliers. The first stage of each multiplier (FPM 1) takes four cycles, followed by a single-cycle 

second stage (pPM 2). The multiplier result is written into the output register R 7 in the next cycle, 

when it can simultaneously be written into the file using a WF. The second instruction shown is 

a SR, that executes in one cycle, concurrent with the multiplier since they share no resources. The 

third instruction is an FPA (or FPS). The first cycle of the FP A is a read-register and can clearly 

overlap the multiplier execution since the buses are free. The execution of the addition takes three 

further cycles, completely overlapped with the multiplier execution, after which the result is 

latched into the special-register R6. During the cycle that R6 is being written, a WF can be used 

to simultaneously transfer the result to the register file. The OUT instruction that is executed next 

transfers data along the buses to load ROlRl; explicit shifting out of the data loaded into ChA/ChB 

is achieved through appropriate use of the IOSa/lOSb bits of succeeding instructions. Instruction 

5 is another FPM, that is able to overlap the first FPM instruction due to the two-stage pipelined 

nature of the multiplier. Instruction 6 is an LSR and is able to overlap two FPM' s, one FP A and 

one OUT instruction (during cycle 6) since none of the other instructions needs the use of the data 
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Figure 4. illustration of Execution Timing on the RVP 
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buses in that cycle. Thus during cycle 6, 9 arithmetic operations may be simultaneously in 

progress (2 FPMs and one FPA on triadic vectors) as well as eight parallel word-level data 

transfers (6 along the three BusA's and BusB's for the LSR and 2 along ChA and ChB for the 

OUT). A WF is shown for instruction 7, and could possibly use R6 or R7 as the source even though 

they are just being written into, respectively, by the previous FPM or FP A/FPS instruction during 

cycle 7. 

4. ROBOTICS COMPUTATIONS ON THE RVP 

This section elaborates on the use of the RVP for robotics computations. First, in Section 4.1, 

it is shown how composite matrix/vector operations such as vector cross product, matrix-vector 

multiply etc. can be efficiently implemented using overlapped execution of the base vector 

operations of the RVP's instruction set. The execution of multiple such independent, composite 

matrix/vector operations on an RVP offers further scope for overlapped execution, as discussed 

in Section 4.2. Finally, a complete robot kinematics computation, the Jacobian, is used as an 

example in Section 4.3, to illustrate the use of the RVP. 

4.1 MatrixlVector Operations on the RVP 

The implementation of more complex vector operations using the base vector instructions of 

the RVP will be described in this section. The matrix-vector (MV) product of a 3x3 matrix and 

3x 1 vector is used as an example of such a composite vector operation. Figure 5 shows a program 

for MV, timing relations for its execution and a reservation table that clearly brings out the overlap 

in the use of various components of FPPl. 

The matrix M is assumed stored as three 3xI column vectors MI, M2 and M3, distributed 

across the register-files ofthe three FPP's of the RVP. Thus Mll is stored as FPPI's component 

of vector-register "MI" (which is some register R8-R63 in the register-file), M2I in FPP2 and 

M3I in FPP3. The final result is stored in some vector-register Z in the register-file. 

The vector V is first loaded into R2/R4 of the SBN (along BusA) through the first LSR 

instruction. Only shift-register A is effectively used; the second operand register is a "don't care", 

so that R3/R5 of the dual SBN may retain its previous value without loading any register along 

BusE. The LSR instruction causes VI to be visible in all components ofR4. The LSR instruction 

is executed in cycle 1; the instruction fetch for it is assumed to have occurred before the first cycle, 

and is not shown explicitly since it is implemented outside the RVP. This convention is_followed 
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Figure 5. Program Execution, Timing and Reservation Table for Matrix-Vector Multiply 
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for all the instructions. The next instruction (FPM) specifies R4 as one operand and Ml as the 

other. This results in the initiation of the computation for the intermediate vector a = VI *Ml = 

<Vl*Ml1,Vl*M21,Vl *M31> by the FPM. This operation takes 7 cycles. During its frrstcycle 

(cycle 2), the input operands use the buses and are latched into internal FPM registers. The first 

stage of the multiplier FPMl is used for the next four cycles. This is marked in the reservation table 

as a' , denoting the incomplete computation for a as occupying the stage. The next cycle uses the 

second multiplier stage FPM2, and the result is available in R7 after the last cycle (8). 

The next two instructions are NOP's while the FPM executes. The next arithmetic operation 

is initiated in cycle 6 for the computation of intermediate vector b = V2*M2 = 
<V2*MI2,V2*M22,V2*M32>. Just prior to this, in cycle 5, a left circular shift of the first register 

(R2/R4) of the SBN is performed to permute vector V in R2. This causes V2 to move from FPP2 

to FPP1, thus causing <V2,V2,V2> to be available in R4 by the implicit broadcast operation of 

the SBN. 

The second FPM instruction is thus initiated at the earliest possible time, overlapping its 

'Register Read' cycle with the fourth cycle of the frrst stage execution of the frrst FPM instruction, 

as shown in the reservation table in Fig. 5c. Following the second FPM, another left circular shift 

is completed to broadcast V3, prior to initiation of computation for intermediate vector c = V3*M3 

= <V3*M13,V3*M23,V3*M33>. At the end of cycle 12, intermediate vector b is output by the 

FPM and latched into R7, while simultaneously the intermediate result a that has been previously 

stored in R7 is moved into R7 d. In cycle 12, a vector add for d = a+b is initiated by the adder. The 

intermediate vectors c and d are latched respectively at the outputs of the multiplier and adder (R 7 

and R6) at the end of cycle 16. The flow-through nature of the fmal write cycle of the adder/ 

multiplier permit their results to be used in cycle 16, simultaneous with their latching in the special 

output registers. Thus the final vector addition Z = d+c is initiated in cycle 16 and the final result 

is written back into the register-fIle with the WF in cycle 20, again simultaneous with its latching 

inR6. 

With a targeted clock cycle of 125ns, a matrix-vector multiply in 20 cycles corresponds to a 

realized performance of 6 Mflops on the single-chip RVP. In overlapped operation (see next 

section), only 12 cycles per matrix-vector multiply are required, i.e. 10 Mflops is achieved. 

Similarly 8Mflops (10 Mflops) performance is attained with matrix-matrix multiply in a 

nonoverlapped (overlapped) mode. Such performance for this computation is difficult to achieve 

today even on powerful mainframe computers, and further improvement in performance is 

possible here with the use of more sophisticated and area-intensive adder/multiplier designs in the 

RVP~ It should also be noted that the short vector lengths involved make the achievable 
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performance for such operations on general-purpose vector machines (such as the Cray-l) 

significantly lower than their peak rates. 

4.2 Overlapped Execution of MatrixIV ector Operations 

It is similarly possible to develop programs for other composite vector operations such as 

vector dot product, vector cross product etc. Table la summarizes the number of RVP cycles 

required for the various operations of relevance for robot kinematics and dynamics computations. 

When independent sets of vector operations are involved, further overlap in utilization of the 

R VP' s functional units is often possible. For example, from Fig. 5 it may be observed that the first 

stage of the multiplier is free between cycles 15-20. Hence, if two independent matrix-vector 

multiplies were required, the second one could be initiated before the first one is completed. 

Fig. 6 graphically displays the possible overlaps between a matrix-vector multiply and other 

succeeding operations. Consider ftrst the overlap of a composite vector operation (VxV, VV or 

MV) with MY. Any composite vector operation completes with the use of the adder, immediately 

preceded by the use of the multiplier and after an initial LSR instruction. Since there are more 

multiplication operations than additions in each of the composite vector operations and each of 

the multiplications takes longer to execute, the multiplier's use is the primary constraining factor 

limiting the amount of overlap possible. In particular, noting Fig. 6, the second vector operation 

(VxV, VV orMV) can only begin such that there is no conflict in the use of the ftrst stage of the 

multiplier. As shown, another multiplication may be initiated during cycle 14 so that the second 

vector operation may begin just prior to that. This overlappability is subject to the absence of any 

conflicts on the use of the buses for data movement. The regions of use of the bus by the previous 

MV operation are explicitly marked as the gray areas in the ftgure. When bus conflicts do occur, 

it is often possible to displace one of the uses of the bus slightly so that no loss of effective overlap 

occurs. This can be seen in the case of the VxV operation, where using the maximal overlap 

possible for the multiplier would have led to a conflict in the use of the bus by the read cycle for 

the adder by the MV operation and its use by the LSR instruction of the Vx V. This is easily avoided 

by performing the LSR for the VxV one cycle earlier when the bus is free. 

Considering now V + V operations, since the multiplier is the bottleneck resource in overlap­

ping composite operations, there are regions where the adder is free, even after maximally 

overlapping composite operations. The hatched region in Fig. 6 corresponds to cycles of possible 

use of the adder at the end of a second previous composite operation, in maximal overlap with the 

previous one. Excluding all possible use of the adder by overlapped composite operations, the 

adder is seen to be free between cycles 8-11 and 20-23. Thus, V+V operations can beinseited 

within overlapped composite operations with no need for any additional cycles. Again, there may 
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Table 1. Summary of Overlapped Execution Timing for RVP 

(a) Sequential Execution 

operauon Cycles 

v* V 7 

V+V 5 

VxV 17 

v - v 20 

MV 20 

MM 44 

(b) Overlapped Execution of 
Composite Operations 

OperaUon Cycles· 

VxV 8 

V- V 12 

MV 12 

MM 36 

*Cycles beyond end of previous composite operation 

need to be slight adjustments to the sequences to avoid possible bus use conflicts, as can be seen 

to be the case for both possible positions where a V + V can be inserted in the schedule. 

An analysis of the possible overlap of composite vector operations is summarized in Table 

1 b in terms of the finishing time of the operation relative to the end of the previous operation. The 

difference between an entry in Table 1 b and the time for the same operation in Table 1 a gi yes the 

amount of overlap possible. For example, by judiciously overlapping two independent vector 

cross products, it is possible to achieve a savings of 9 cycles - instead of 17 cycles each, the 

second overlapped operation can complete 8 cycles after the completion of the first. The 

information in Table 1 could be used by a compiler for the RVP in optimally scheduling the 

operations required to execute robotics computations. Its use in programming the Jacobian is 

illustrated in the next section. 

4.3 Example: Jacobian Computation Using the RVP 

The use of the RVP for robotics computations is now illustrated using the Jacobian as an 

example. Table 2 shows the Orin-Schrader formulation for the computation of the Jacobian, one 

of the six methods described in [18]. Only the case of revolute joints is shown; the treatment of 

the slidingjoint case is somewhat simpler. In the equations, N is the number of degrees of freedom, 

iUi_1 is the 3x3 orientation matrix relating the ith link to the i-1st link, and ipi* represents the position 

of the ith link with respect to the i-1st link. The 3x 1 vectors Yi and ~i form the ith column of the 6xN 

Jacobian matrix J. 
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A robot with six degrees of freedom is considered here. The computation required by the 

equations in Table 2 for this case can be expressed using a task graph, as seen in Fig. 7. The task 

graph shows the computation and its detailed scheduling on an RVP, including all input/output 

required. Each circle represents a component computational task at the matrix/vector operation 

level, with the operation explicitly indicated at the bottom of the circle. The number at the top 

of a task is its sequence number, representing the order of its scheduling on the RVP. The number 

range seen in the middle of a task gives the exact span of cycles that it actively executes on the 

Table 2. Equations for Jacobian Computation [18] 

h[ 11 12 ~N 1 ... 
/31 /32 /3N 

where 

N+1Ui _ 1 N+IUi iUi _ 1 N, ... 2, 1; (1) 

N+1/i N+'U'm 1,2, ... N; (2) 

N+l ri_ 1 N+1ri _N+l U i ipi N, ... 2,1; (3) 

N+l /3i N+l Ii X (_N+1ri_ 1 ) 1,2, ... N. (4) 

RVP. For example, task 1 is a matrix-vector multiply (MV) and is scheduled for execution 

between cycles 7 and 26. 

Directed edges in the task graph specify data flow and precedence constraints. Relevant 

intermediate quantities communicated between tasks are marked on the directed edges between 

tasks. The rectangular boxes explicitly show all input/output required by the RVP. The inputs for 

the Jacobian computation are the iUi.1matrices and the ipi* vectors, 1 :5; i:5; 7, while the outputs are 

the vectors 'Yi and ~i' 1 :5; i:5; 6, for each column of the Jacobian. At the bottom of each I/O box, 

the RVP channel used for I/O is displayed, and the actual cycles during which the operation takes 

place are specified by the numbers in the middle. Note that only ChA is used here. 

The tasks in the task graph can be seen to correspond to the matrix/vector operations specified 

by the equations in Table 2. Eq. (1) requires a product of two 3x3 matrices for each of the six links, 

marked as MM in the task graph. Eq. (2) essentially specifies the extraction of the third column 

of a 3x3 matrix and thus does not require any computation. Eq. (3) requires a matrix-vector 
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Figure 7. Task Graph and Scheduling of Jacobian Computation on anRVP 
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multiply (MV) as well as the subtraction of two 3xl vectors to compute the intermediate 3x1 

vectors N+l ri_1. These vectors then have to be negated before being used in a vector cross product· 

(VxV) in Eq. (4). Instead of performing a vector subtract, followed by a negation, the negated 

vectors - N+\_l are directly computed in the task graph using - N+l ri and vector addition (V + V) 

instead of vector subtraction. Thus the task graph should contain 6 MM's, 6 MV's, 6 V+V's and 

6 VxV's. A minor optimization is employed- since only the last column of7Uo is needed, the 

entire matrix is not computed, so that a MY instead of an MM is used in this case. 

Considering the scheduling of the computational tasks, an attempt is made to have succes­

sively scheduled tasks be independent operations, so that an immediately succeeding task does 

not use any results produced by the preceding task. This is done in order to capitalize on the 

overlappability of independent composite operations, as per Table lb. Thus, in Fig. 7, task 2 is 

independent of task 1 and hence overlaps the first 8 cycles ofits execution with the last eight cycles 

of task 1 's execution. Similarly, with I/O, maximal overlap with computations is sought, so that 

the associated overhead is minimized. Of course, I/O overhead for inputting the initial quantities 

to begin the computation and for outputting final results will be unavoidable. 

The manual derivation of a schedule for the tasks of a computation such as the Jacobian is 

completed using a multi-pass approach. Starting with a task graph of the computation (Fig. 7 

without the numbers representing the schedule), an order for the composite operations is 

determined, so that successive tasks are independent, as faras possible. A fITst -cut schedule is then 

created with the help of Table 1. Task 1 is scheduled starting after the initial input required, and 

successive tasks are scheduled at an appropriate time after the previous task, depending on 

whether dependent or independent of the previous task. The finishing time of task i, TFi is thus 

either (TFi_1+TNi ) or (TFi_1+TO), where TNi and TOi are the non-overlapped (Table 1a) and 

overlapped (Table 1 b) execution times, respectively, for the operation represented by task i. After 

all constituent composite operations of the computation have been so scheduled, simple vector 

operations such as vector adds are scheduled. As discussed in Section 4.2, it is very often possible 

to embed an independent V + V operation completely inside a composite operation, so that the add 

operation essentially executes for free due to the overlap. Any V + V tasks in the task graph are then 

scheduled, attempting to so embed them within independent composite operations, as can be seen 

to have been successfully accomplished in Fig. 7. The embedding of the vector-adds may require 

slight adjustment of the beginning/end times of some operations in order to avoid conflicts on the 

use of the bus, as discussed earlier in Section 4.2. The schedule is finally refined to incorporate 

any necessary delays to allow for I/O. 

For the Jacobian example, using the overlapped execution times of 8, 12 and 36 cycles 

respectively for V xV, MV and MM, and non-overlapped execution time of 20 cycles for the first 
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MV task, and assuming maximal overlap with all V+V's coming for free, a minimum possible 

finishing time may be calculated giving 20 + 5*36 + 6* 12 + 6*8 = 320 cycles. Excluding the first 

6 cycles for inputting two 3x1 vectors to get started, and a final 3 cycles for outputting the last 

output vector, this lower bound is actually achieved by the schedule shown. Thus, besides 

maximal overlap of computation, maximal possible overlap of all I/O has also been accomplished. 

The schedule shown in Fig. 7 requires 329 cycles for the Jacobian computation. The computation 

is comprised of 234 floating-point multiplications and 168 floating-point additions. Thus, with 

a cycle time of 125 ns, the computation takes 41 Ils, providing an average performance of 

approximately 10 Mflops. The utilization of each FPM is approximately 95%, while the adders 

are 50% utilized. A conventional microprocessor with comparable FP A/FPM units would have 

required at least 234*7 + 168*5 = 2478 cycles; i.e. the RVP design provides a factor of 

improvement of at least 7. 

The manual generation of such schedules as that for the Jacobian can be very tedious with 

complex robotics computations. Work is currently in progress on the development of an 

automated scheduler. For more complex computations, such a tool will be essential for the 

effective use of the RVP, especially so in the context of mu1tip1e-RVP systems that are considered 

next. 

5. RESTRUCTURABLE MULTIPLE-RVP CONFIGURATIONS 

The R VP design has been tailored to the effective exploitation of fine-grained parallelism in 

matrix/vector operations. Unlike the structured parallelism at this level, the parallelism available 

at higher levels of robot kinematics and dynamics computations has less regularity. However, 

. when such a computation is expressed in terms of tasks at the level of matrix/vector operations, 

the total amount of data movement required between parallel tasks is much less than the intra-task 

data movement. Thus the impact of the data movement problem on the scheduling of tasks at the 

matrix/vector operation level is much less than if the scheduling was done at the primitive 

operation level. It is thus very attractive to use multiple R VP' s to simultaneously execute different 

matrix/vector operations comprising a higher level computation such as the Jacobian. This section 

elaborates on the use of multiple-RVP configurations for robotics computations, using the 

Jacobian as an example to illustrate how a configuration can be structured to match the 

requirements of the computation. 

When heterogenous task graphs are scheduled on a general-purpose mUltiprocessor, some 

dynamic synchronization mechanism has to be used to signal the end of tasks when they complete 

execution and to enable other tasks as soon as their predecessor tasks complete. Triggeri:ng 
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mechanisms could of course be incorporated into a multiple-RVP system to enable scheduling of 

matrix/vector level task graphs. However, the conditional-free nature of the task graphs of 

robotics computations makes this unnecessary. Since the number of cycles required by an RVP 

to execute any of the component matrix/vector operations of the task graph is exactly known 

before execution, if additionally the time required for performing input/output between RVP's is 

explicitly factored into the scheduling, it is possible to determine a priori, the exact times at which 

these operations can be collectively scheduled on multiple RVP' s to execute the entire task graph. 

Thus, given any particular cycle in this execution, the specific primitive instruction that needs to 

be executed by any RVP can be determined. The set of primitive instructions to be executed at 

a specific cycle by the various RVP's can in fact be considered to be a single very long horizontal 

micro-instruction. Hence, a multiple-RVP system may be viewed as a Very-Long-Instruction­

Word (VLIW) processor [21], except that the conditional-free nature of the computations of 

interest me<4lS that none of the complications due to branches handled by trace-scheduling 

compilers for general-purpose VLIW architectures are encountered here. 

The "length" of the VLIW instruction is proportional to the number ofRVP' s used. The actual 

number of RVP' s used can be adapted to the specific task graph to be computed on the basis of 

a cost/performance trade-off. Using more RVP's implies greater exploitation of potential 

parallelism, but also means more inter-RVP communication overhead, and in general more idle 

time due to computational load -imbalance. Different configurations of R VP' s will be appropriate 

for different computations. For example, the number of degrees offreedom of the robotics system 

being modeled will significantly impact the maximum number ofRVP' s effectively usable for the 

computation. The flexibility and variability of multiple RVP configurations leads us to label such 

multiple-RVP systems as Variable-Very-Long-Instruction-Word-Processors (V2LIWP's). Sec­

tion 5.1 details the structure of one such V2LIWP configuration. In Section 5.2, a parallel 

formulation of the Jacobian computation is presented and mapped onto a 3-RVP configuration to 

illustrate the methodology for use of multiple RVP's. In Section 5.3, the application of multiple 

RVP's to other robotics computations, including the inertia matrix, is discussed. 

5.1 Tightly Coupled RVP Configurations: V2LIWP's 

Fig. 8a illustrates the approach to controlling the tightly coupled RVP's of a V2LIWP. The 

V2LIWP is treated as an attached processor to a conventional host processor. The individual RVP 

program memories contain the component instructions for the RVP' s. A single address needs to 

be provided to these memories to collectively read a "long instruction". A very simple organiza­

tion for the RVP Controller is shown. The host computer is interconnected through a host interface 
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with the R VP controller. In order to execute a computation on the VZLIWP, the host processor first 

sets up input data (to be explained shortly) and then provides the RVP Controller with a starting 

address and instruction count for the relevant VZLIWP program. These are loaded into an Address 

Register and a Size Register,respectively, in theRVP Controller through use of the 'Reg', 'Load' 

and 'Data' lines from the Host Interface. The host can then initiate the computation by causing 

the 'Start' line from the interface to be pulsed. This causes the contents ofthe Address Register 

and the Size Register to be loaded into a Program Counter (PC) and Count Register, respectively, 

in the RVP Controller. Following this, the PC is incremented and the Count Register decremented 

every clock cycle, until the Count Register goes to zero. When the Count Register reaches zero, 

the 'Done' flag is raised by the R VP Controller to notify the host processor of the completion of 

the computation. Also, the PC resets to zero, a predetermined address where all RVP program 

memories store a NOP. 

Fig. 8b shows a 3-R VP V2LIWP configuration structured for the parallel computation of the 

Jacobian for a 6 degree-of-freedom manipulator. The RVP's are interconnected in a ring fashion 

and interface to the host processor through FIFO (First-In-First-Out) buffers. An In-FIFO and an 

Out-FIFO are used with each RVP. The host processor places all input data for the computation 

into the In-FIFO's and expects all output results to be placed in the Out-FIFO's by the RVP's at 

the end of the computation. In the configuration shown, each FIFO pair is primarily associated 

with one of the RVP's (ChA), but is readable by another RVP. The FIFO's ReadlWrite controls 

are connected to the Channel control signals of the primary RVP, which is the only one that can 

write into it. The read strobes are also provided by the primary RVP, but due to the lock-step 

synchronized operation of the V2LIWP, the other RVP, which connects to the data lines can 

simultaneously read the value. The three-way connection between a primary RVP, secondary 

RVP and a FIFO-pair thus permits RIW communication between the RVP's, RIW communica­

tion between the primary RVP and FIFO, and Read-Only communication between the secondary 

RVP and the In-FIFO. No control signals are used in inter-RVP communication, again due to the 

synchronized mode of operation. The flexible inter-RVP communication mechanism allows a 

multiple-RVP system to be easily structured into different configurations depending on the 

requirements of the algorithm being implemented. The following section shows the use of this 

V2LIWP configuration in scheduling a parallel formulation of the Jacobian computation for a 6 

degree-of-freedom manipulator. 

5.2 Example: Parallel Jacobian Computation on a VZLIWP 

This section illustrates the approach to use ofmultiple-RVP systems, again considering the 

Jacobian ,example. While it is possible to map the computations for the equations in Table 1 onto 
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a multiple-RVP system, it is preferable to use a formulation ofthe Jacobian computation that has 

greater inherent parallelism by virtue of its formulation. Hence a parallel formulation of the 

Jacobian computation for a six-degree-of-freedom manipulator is used [9]. The equations for the 

parallel Jacobian formulation are shown in Fig. 9a. Intermediate vectors t are used with this 

formulation, where t i _1,i = Pi' and t i_1,N+l = r i_1• This parallel formulation uses a 10g2N stage 

computation for a manipulator with N degrees of freedom, so that there are three levels for the case 

considered here. The flow of computation for this parallel formulation is illustrated in Fig. 9b, 

where the partitioning of the computation among the processors of a three-RVP system (such as 

the one shown in Fig. 8b) is indicated. The boxes show quantities computed and the arrows show 

precedence and data flow. Thus the diagonal arrows represent the need for explicit interprocessor 

communication between the RVP's, while vertical arrows connect boxes to be allocated to the 

same processor and thus require no actual communication. The ring interconnection between the 

RVP's in Fig. 8b facilitates communication between any pair of processors. Certain input 

quantities are used by more than one processor, for example 3U2 3p3'. In such cases, it may be 

possible (due to the synchronized model) for both the processors to simultaneously input it, ifthey 

are both coimected to the FIFO along which the quantity is input. 

After an initial partition of the overall computation, as shown in Fig. 9b at the intra-block 

level, a task graph at the lower matrix/vector operation level is generated to facilitate its efficient 

scheduling. This is shown in Fig. 10 along with the detailed schedule. Such a schedule can be 

generated using a procedure similar to the one explained for the earlier task graph in Fig. 7, except 

that additional explicit scheduling ofinter-RVP communications is required. The computation 

takes 164 cycles to complete. When compared to the 329 cycles taken by the original serial 

algorithm on one R VP, an overall speedup of 329/164, or just over 2.0 is obtained. However, the 

parallel formulation inherently requires more computation than the serial form; if implemented 

on a single RVP, the best possible schedule for it takes 425 cycles. Thus, when comparing the 1-

RVP implementation and the 3-RVP implementation of the same (parallel) formulation of the 

algorithm, the speedup obtained is actually 425/164 = 2.59, a figure that more closely reflects the 

effectiveness of the parallel schedule generated for the computation. The primary reason for the 

loss of speedup is processor idling due to inability to perfectly balance the total computational 

load among the R VP' s. While interprocessor communication also adds to the overhead, its effect 

is only secondary - in the example discussed, only 4 cycles were added due to interprocessor 

synchronization. 

5.3 Application to Other Robotics Computations 

A number of other kinematics and dynamics computations have been considered for 

implementation on single or multiple-RVP configurations, with results obtained which are 
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similar to those for the Jacobian. In particular, the computation of the inertia matrix for a six­

degree-of-freedom manipulator has been programmed on both a single and three-RVP set. The 

composite rigid body method given in [23] was used. Detailed programming to compute the 

diagonal elements of the inertia matrix, which is the majority of the computation, generally 

included use of Table 1 after appropriate sequencing of the basic matrix/vector operations to 

minimize the dependence of successive operations. Computation of the inertia matrix does 

include a small number of scalar operations, but this was easily taken care of by treating each 

scalar quantity as a vector with 3 identical elements. Also, a few additional operations such as 

matrix-matrix add are required, but are easily broken down into sets of the previously defined 

operations (three vector adds in this case). 

The computation of the diagonal elements of the inertia matrix on a single RVP takes 1392 

cycles to complete. Ittakes 733 cycles to complete on a three-RVP set for a speedup of 1.9. Again, 

using a more direct comparison of the same parallel algorithm programmed on both configura­

tions, the speedup obtained is 2.3. 

In programming the inertia matrix computation, it should be noted that the reciprocal of the 

mass of the individual links, as well as for composite sets of links, is required. While the RVP 

was unable to compute the reciprocal operation, this was not a problem since this was simply 

relegated to the host processor. In fact, the reciprocal of the masses may be computed off-line 

before implementation of real-time control since all of the mass parameters are given. 

Other kinematics and dynamics computations, including Direct Kinematics and Inverse 

Dynamics, have been programmed on various configurations ofmultiple-RVP's [16,22]. While 

the overall architectural concept was somewhat broader in [16,22] than that presented in this paper 

and included a Robotics Scalar Processor as well, similar results were obtained showing the 

viability of the RVP architectural approach. In general, the RVP is appropriate when the 

fundamental computations include add, subtract, or multiply of 3x1 vectors and 3x3 matrices. 

Scalar operations may be handled with some reduction in efficiency, but this is usually not a 

problem since most quantities may be placed into a 3x1 vector form. Also, it is necessary to 

relegate trigonometric functions to the host processor, but this is in many cases not a problem since 

when a joint angle is sampled by the host processor, the sine and cosine may also be computed. 

In DirectKinematics, Inverse Dynamics, the Jacobian, and Inertia Matrix, this is the only time that 

the need for trigonometric evaluation arises and is easily handled by the host processor. In other 

cases such as in evaluation using closed-form solutions to Inverse Kinematics, where a number 

of trigonometric evaluations are required, then use of a cordic processor may be effectively 

applied [15]. 
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6. SUMMARY AND CONCLUSIONS 

In this paper, the architecture for a Robotics Vector Processor (R VP) has been described. It 

consists of an SIMD array of three Floating-Point Processor (FPP) units, interconnected so as to 

facilitate implementation of robot kinematics and dynamics computations for real-time control. 

With considerable internal parallelism both within and between the FPP's, good speedup over 

conventional microprocessors may be obtained with a single R VP. Further exploitation of 

parallelism is possible by scheduling robotics computations expressed as task graphs at the 

matrix/vector operation level on restructurable arrays of RVP's. These tightly synchronized 

multiple-RVP configurations may be viewed as Variable-Very-Long-Instruction-Word Proces­

sors (V2LIWP's) and achieve low overhead and high efficiencies due to the tight coupling. The 

Jacobian and Inverse Dynamics computations along with other computations necessary to 

implement Inverse Plant Plus] acobian Control [17] have been evaluated on single and multiple­

RVP systems, and real-time control is feasible [22]. 

A floor plan for the RVP has been completed (Fig. 11) and the entire processor, requiring 

approximately 90,000 transistors, can be fabricated on a single VLSI chip (7 .9mm x 9.2mm) using 

1.2 11m CMOS technology [22]. A 32-bit floating-point adder was fabricated using 3 micron 

scalable CMOS technology using the MOSIS facility and was successfully tested at a 12.5 Mhz. 

clock rate, faster than expected by approximately 50%. With improvements in fabrication 

technology in the future, increased performance can be expected both from higher usable clock 

rates, and more importantly, from the feasibility of incorporating area-intensive, faster arithmetic 

units in place of our current conservative but area-efficient designs. Design and simulation of the 

major elements of the RVP have been completed. Integration and control of all of these elements 

should not present any major difficulty since overall on-chip control functions have been greatly 

simplified (instruction fetch is off-chip). 

Initial work has been completed on mapping multi-rate robotics control schemes [17] on 

multiprocessor systems comprised of a number of loosely-coupled V2LIWP's [16,22]. The 

multiple levels of hardware parallelism exploitable, along with the great degree of flexibility and 

restructurability possible, make these loosely-coupled multiprocessor systems very powerful. 

Hopefully, with additional engineering work, such architectures for robotics will be realized and 

greatly expand the class of control schemes for which real-time implementation is possible. 



www.manaraa.com

236 

CHA 

2 32 

• 11500 '}.. 

RF2 RF3 

56x32 56x32 

FPM 2 FPM 3 
1234'}.. 

2640'}.. 

... 9875'}.. 
Q) 

FPA 2 FPA 3 24 ~ ... 11871.. ..., 
I=i 

Instruction 0 
Q 

SBNA 2 SBNA 3 

SBNE 2 SBNE 3 

CHA 2 CHA 3 

CHB 2 CHB 3 

32 

CHB 

Figure 11. Robotics Vector Processor Floor Plan 



www.manaraa.com

237 

ACKNOWLEDGEMENTS 

The assistance ofN. J aksic in the preparation of this manuscript is gratefully acknowledged. 

This work was supported in part by the National Science Foundation, through Computer 

Engineering Grant No. DMC-8312677. The fabrication of the VLSI components was through the 

MOSIS facility with support from the Defense Advanced Research Projects Agency under 

Contract No. DAAE07-84-K-ROOl. 

REFERENCES 

[1] D.J. Kriegman, D.M. Siegel, S. Narasimhan, J.M. Hollerbach and G.E. Gerpheide, 
"Computational Architecture for the Utah/MIT Hand," Proc. of the IEEE International 
Conference on Robotics and Automation, pp. 918-924, St. Louis, MO, March 1985. 

[2] J.B. Chen, R.S. Fearing, B.S. Armstrong and J.W. Burdick, "NYMPH: A Multiprocessor 
for Manipulation Applications," Pmc. of the IEEE International Conference on Robotics 
and Automation, Vol. 3, pp. 1731-1736, San Francisco, CA, April 1986. 

[3] R.B. McGhee, D.E. Orin, D.R. Pugh and M.R. Patterson, "A Hierarchically-Structured 
System for Computer Control of a Hexapod Walking Machine," Proc. of Symposium on 
Theory and Practice of Robots and Manipulators, Udine, Italy, June 1984. 

[4] J.Y.S. Luh and C.S. Lin, "Scheduling of Parallel Computation for a Computer-Controlled 
Mechanical Manipulator," IEEE Transactions on Systems. Man and Cybernetics, Vol. 
SMC-12, pp. 214-234, March 1982. 

[5] J. Barhen, "Robot Inverse Dynamics on a Concurrent Computation Ensemble," Proc. of 
1985 ASME International Conference on Computers in Engineering, Vol. 3, pp. 415-429, 
Boston, MA, August 1985. 

[6] R. Nigam and C.S.G. Lee, "A Multiprocessor-Based Controller for the Control of 
Mechanical Manipulators," IEEE Journal of Robotics and Automation, Vol. RA-1, No.4, 
pp. 173-182, Dec. 1985. 

[7] C.S.G. Lee and P.R. Chang, "Efficient Parallel Algorithm for Robot Inverse Dynamics 
Computation," IEEE Transactions on Systems. Man and Cybernetics, Vol. SMC-16, No. 
4, pp. 532-542, July/August 1986. 

[8] L.H. Lathrop, "Parallelism in Manipulator Dynamics," International Journal of Robotics 
Research, Vol. 4, No.2, pp. 80-102, Summer 1985. 

[9] D.E. Orin, K.W. Olson and H.H. Chao, "Systolic Architectures for Computation of the 
Jacobian for Robot Manipulators," in Computer Architectures for Robotics and Automa­
tion, pp. 39-67, Edited by J.H. Graham, Gordon and Breach Science Publishers, New York, 
1987. 



www.manaraa.com

238 

[10] M. Amin-Javaheri and D.E. Orin, "A Systolic Architecture for Computation of the 
Manipulator Inertia Matrix," Proc. of the IEEE International Conference on Robotics and 
Automation, Vol. 2, pp. 647-653, Raleigh, NC, Apri11987. 

[11] Y. Wang and S.E. Butner, "A New Architecture for Robot Control," Proc. of the IEEE 
International Conference on Robotics and Automation, Vol. 2, pp. 664-670, Raleigh, NC, 
April 1987. 

[12] S.S. Leung and M.A. Shanblatt, "Real-Time DKS on a Single Chip," IEEE Journal of 
Robotics and Automation, Vol. RA-4, No.3, pp. 281-290, August 1987. 

[13] H.H. Chao, Parallel/Pipeline VLSI Computing Structures for Robotics Applications, Ph. 
D. dissertation, The Ohio State University, Columbus, OH, June 1985. 

[14] Y.T. Tsai and D.E. Orin, "A Strictly Convergent Real-Time Solution for Inverse Kinemat­
ics of Robot Manipulators," Journal of Robotic Systems, VQ!. 4, No.4, pp. 477-501, 1987. 

[15] C.S.G. Lee and P.R. Chang, "A Maximum Pipelined CORDIe Architecture for Inverse 
Kinematic Position Computation," IEEE Journal of Robotics and Automation, Vol. RA-
3, No.5, pp. 445-458, Oct. 1987. 

[16] Y.L.C. Ling, K. Olson, D.E. Orin and P. Sadayappan, "A Layered Restructurable VLSI 
Architecture for Robotics Control," Proc. of 1987 IEEE International Conference on 
Computer Design, pp. 267-272, Port Chester, NY, October 1987. 

[17] K.W. Lilly and D.E. Orin, "Multiprocessor Implementation of Dynamic Control Schemes 
for Robot Manipulators," Proceedings of 1986 ASME International Computers in Engi­
neering Conference, Vol. 1, pp. 53-59, Chicago, IL, July 1986. 

[18] D.E. Orin and W.W. Schrader, "Efficient Computation of the Jacobian for Robot 
Manipulators," International Journal of Robotics Research, Vol. 3, No.4, pp. 66-75, Winter 
1984. 

[19] K. Hwang and F. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, 
New York, 1984. 

[20] H.T.Kung, "Why Systolic Architectures?," IEEE Computer, Vol. 15,No.l,pp. 37-46, Jan. 
1982. 

[21] J.A. Fisher, "Very Long Instruction Word Architectures and the ELI -512," Proceedings of 
10th Annual Symposium on Computer Architecture, pp. 140-150, Stockholm, Sweden, 
June 1983. 

[22] Y.L.C. Ling, Layered Multiprocessor Architecture Design in VLSI for Real-Time Robotic 
Control, Ph. D. dissertation, The Ohio State University, Columbus, OH, Dec. 1986. 

[23] M.W. Walker and D.E. Orin, "Efficient Dynamic Computer Simulation of Robotic 
Mechanisms," ASME Journal of Dynamic Systems. Measurement. and Control. Vol. 104, 
pp. 205-211, September 1982. 



www.manaraa.com

ON THE PARALLEL ALGORITHMS 
FOR ROBOTIC COMPUTATIONS 

C. S. George Lee 
School of Electrical Engineering 

Purdue University 
West Lafayette, Indiana 47907, USA 

ABSTRACT 

The kinematics, dynamics, Jacobian, and their corresponding inverses are six major 
computational tasks in the real-time control of robot manipulators. The parallel algorithms 
for these computations are examined and analyzed. They are characterized based on six 
well-defined features that have greatest effects on the execution of parallel algorithms. These 
features include type of parallelism, degree of parallelism (granularity), uniformity of opera­
tions, fundamental operations, data dependency, and communication requirement. It is found 
that the inverse dynamics, the forward dynamics, the forward kinematics and the forward 
Jacobian computations possess highly regular properties and they are all in homogeneous 
linear recursive form. The inverse Jacobian is essentially the problem of solving a system of 
linear equations. The closed-form solution of the inverse kinematics problem is obviously 
non-uniform and robot dependent. The iterative solution for the inverse kinematics problem 
seems uniform and the parallel portions of the algorithm involve the forward kinematics, the 
forward Jacobian, and the inverse Jacobian computations. Suitable algorithms for the six 
basic robotics computations are selected and parallelized to make use of their common 
features. The characterization of the six basic robotics algorithms is tabulated for discussion 
and the results can be used to design better parallel architectures or a common architecture for 
the computation of these robotics algorithms. 

This work was supported in part by a grant from the Ford Fund and in part by the National Science Foundation 
under Grant CDR 8803017 to the Engineering Research Center for Intelligent Manufacturing Systems. 
Any opinions, findings, and conclusions or recommendations expressed in this article are those of the author and 
do not necessarily reflect the views of the funding agencies. 

NATO AS! Series, Vol. F 66 
Sensor-Based Robots: Algorithms and Architectures 
Edited by C. S. George Lee 
© Springer-Verlag Berlin Heidelberg: 1991 



www.manaraa.com

240 

1. INTRODUCTION 

Robot manipulators are highly nonlinear systems and their dynamic performance is 
directly dependent on the efficiency of the kinematic and dynamic models, the control 
schemes/algorithms, and the computer architecture for computing the control schemes. In 
general, robot manipulators are usually servoed in the joint-variable space while the objects to 
be manipulated are usually expressed in the world (or Cartesian) coordinate system. In order 
to control the position and orientation of the manipulator end-effector, the robot controller is 
required to compute, at a sufficient rate, such tasks as coordinate transformation between the 
joint-variable space and the Cartesian space, generalized forces/torques to drive the joint 
motors, the manipulator inertia matrix for model-based control schemes, and the Jacobian 
matrix which relates the joint velocity in the joint-variable space to the Cartesian space. 
These are the basic robotic computations for the control of robot manipulators. They are 
equivalent to the computations of kinematics, dynamics, Jacobian, and their corresponding 
inverses. These kinematics and dynamics computations reveal a basic characteristic and 
common problem in robot manipulator control- intensive computations with a high level of 
data dependency. They have become major computational bottlenecks in the control of robot 
manipulators. Despite their impressive speed, conventional general-purpose uniprocessor 
computers can not efficiently handle the kinematics and dynamics computations at the 
required computation rate because their architectures limit them to a mostly serial approach to 
computation, and therefore limit their usefulness for robotic computational problems. In 
addition, the processing of external sensory information for planning, coordination, and 
decision-making has further put a growing demand on the computational needs. Conse­
quently, the quest for real-time robot arm control for better dynamic performance has resulted 
in a concerted effort and push for the development of parallel algorithms of lower computa­

tional complexity as well as faster computational architectures for their computations. 

This paper addresses these computational problems in robot arm control and focuses on 
the investigation of various parallel algorithms in computing the robot arm kinematics, 
dynamics, Jacobian, and their corresponding inverses. The objective is to identify, analyze, 
and exploit the inherent parallelism of these robotics algorithms. The result of this study is to 
classify the common features among these parallel algorithms, which will inevitably aid the 
design of efficient parallel computational architectures for the control of robot manipulators. 

2. BASIC ROBOTICS COMPUTATIONS 

The six basic robotics computations in robot arm control are forward and inverse 
kinematics, forward and inverse dynamics, and forward and inverse Jacobian equations. 
These six basic robotics computations are required at various stages of robot arm control and 
computer simulation of robot motion. Unfortunately, they are all computational intensive 
tasks and constitute the major computational bottleneck in the real-time control of robot 
manipulators. In this section, we shall focus on various parallel algorithms for their 
computations. 
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2.1. Forward Kinematics Problem 

The problem of computing the position and orientation (Le., pose) of the manipulator 
end-effector from the measured data of angular/linear displacement of all the joints is known 
as the forward (or direct) kinematics problem [1-10] and can be stated as: Given the n meas­
ured joint variables (q 1, q 2, ... ,qn), where qi == ei (joint angle) for a revolute joint or 
qi == di (joint displacement) for a prismatic joint, find the position and orientation of the 
manipulator end-effector in the Cartesian space. Besides providing the pose information of 
the manipulator end-effector, this computation can also provide, to a certain extent, the loca­
tion information of the manipulator's intermediate rigid links to better help the manipulator 
negotiating around obstacles when moving in an unpredictable environment. 

To describe the translational and rotational relationship between adjacent robot links, an 
orthonormal coordinate frame (Xi, Yi, Zi ), based on the Denavit-Hartenberg matrix represen­
tation [1-7], is assigned to link i. Once a link coordinate system has been established for each 
link, the 4x4 homogeneous link transformation matrix, i-I Ai, can easily be developed relat­
ing the ith coordinate frame to the (i -1)th coordinate frame. Using the i-I Ai matrix, one can 
relate a point Pi at rest in link i and expressed in homogeneous coordinates with respect to the 
ith coordinate system to the (i -1 )th coordinate system established at link (i -1) by 

Pi-l = i-I Ai Pi (1) 

where Pi-l ~ (Xi-I, Yi-l , Zi-l , Il, Pi ~ (Xi, Yi , Zi , Il, and 

cosei - cos ai sin ei sinai sinei ai cosei 

i-I Ai = sinei cosai cosei - sin ai cos ei ai sin ei 
(2) 

0 sinai cos a i di 

0 0 0 1 

The homogeneous transformation matrix °Ti, which specifies the position and orientation of 
the ith coordinate frame with respect to the base coordinate system, is the chain product of 
successive homogeneous link transformation matrices of i-I Ai expressed as: 

°Ti = ° Al 1 A2 ... i-I Ai = :IT j-l Aj 

j=1 

= [XOi YOi ZOi P1i 1 for i = 1,2, ... ,n . 

(3) 

Specifically, for i = n, we obtain the manipulator hand matrix T, T == °Tn , which specifies the 
position and orientation of the end-effector of a manipulator with respect to the base coordi­
nate system. This Denavit-Hartenberg matrix representation reduces tlie direct kinematics 
problem to finding an equivalent 4x4 homogeneous transformation matrix which relates the 
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spatial displacement of the "hand coordinate frame" to the reference coordinate frame. The 
advantage of using the Denavit-Hartenberg matrix representation is its algorithmic universal­

ity in deriving the kinematic equation of a robot arm. 

Consider the T matrix to be of the form: 

T ~ [R~x3 : P~1 1 ~ [~ :; ~ ;; I ~ [n sap 1 
- 01x3 I Ixl - ~ ~ ~ P; - 0 0 0 I 

(4) 

and using the six j-l Aj matrices of the PUMA robot arm in [2], the chain multiplication of 
these six homogeneous link transformation matrices yields a set of twelve equations, nine for 
orientation matrix and three for position information: 

nx = C1[C23(C4CSC6 -S4S 6) -S23S SC6] - S 1[S4C SC 6 + C 4S 6] 

ny = S 1[C23(C4CSC6 - S4S6) - S23SSC 6] + C 1[S4C sC6 + C4S 6] 

nz =-S23[C4C SC6 -S4S 6] - C23S SC 6 

SX = C1[-C23(C4CSS 6 + S4C 6) + S23S SS 6] - S d-S 4C SS 6 + C 4C6] 

Sy = S 1 [-C23(C 4C SS6 + S4C6) + S23SSS6] + C 1[-S4C SS6 + C4C 6] 

SZ =S23(C4C SS 6 +S4C 6) + C23S SS 6 

ax = C 1 (C23 C 4S S + S23CS) -S 1S 4S S 

ay =SI (C23 C 4SS + S23 C S) + C 1S 4S S 

az =-S23C 4S S +C23CS 

Px = C1[d6(C23C4S S + S23 C S) +S23d 4 + a3 C 23 + a2C 2] - S l(d6S 4S S + d2) 

Py = SI[d6(C23 C4S S + S23 CS) + S23 d 4 + a3 C 23 + a2C 2] + C 1(d6S 4S S +d2) 

pz =d6(C23C S -S23C 4S S)+C23 d 4 -a3S 23 -a2S 2 

(5.a) 

(5.b) 

(5.c) 

(5.d) 

where dj and aj are known PUMA's link parameters, and Cj==cos9j, Sj==sin9j, 

Cjj == cos (9j + 9j ), and Sij == sin (9j + 9j ). 

An examination of the above equations shows a large set of elementary operations: 
scalar mUltiplications, scalar additions, and transcendental functions. One can use micropro­
cessors with co-processors and an appropriate table look-up technique for the transcendental 
functions to compute the end-effector location. Although this multiprocessor-based comput­
ing system is widely used in present-day robot controllers, it suffers from the solution accu­
racy, and lacks flexibility and modularity. The solution inaccuracy is due to the table look­
up, while the flexibility is due to the need for changing the link coordinate frames of the 

manipulator, if desired. Furthermore, if one wants to obtain the pose of the manipulator end­
effector with respect to a world coordinate frame instead of the robot's base coordinareframe, 
then an additional homogeneous transformation matrix relating the base coordinate frame to 
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the external world coordinate frame must be included in Eq. (3), resulting in a different set of 
equations in Eqs. (S.a)-(S.d). Thus, computing a fixed set of equations as in Eqs. (S.a)-(S.d) 
does not present an attractive solution to the real-time computation of the manipulator end­
effector location. 

To speed up the computation in Eq. (3), most of the past research on this problem con­
sidered fine grain parallelism by designing a single chip processor with high vector computa­
tional speed and efficient trigonometric function generator. This includes the DKS chip with 
table generation of trigonometric function [8], the Taylor series expansion [9] with VLSI 
implementation, and the CORDIC pipelined architecture for computing the end-effector loca­
tion [10]. 

Actually, a more cost-effective and efficient method for computing the successive 
matrix multiplication equation in Eq. (3) is to reformulate it into the homogeneous linear 
recursive form as 

°Tl = °Al 

(6) 

from which the configuration of all the coordinate frames can be obtained at the time com­
plexity of O(rlog2n 1) by using the recursive doubling technique [38]. 

2.2. Inverse Kinematics Problem 

The inverse kinematics problem [1-6],[8],[11-24] can be stated as: Given a desired posi­
tion and orientation of the manipulator end-effector and the geometric link parameters with 
respect to a reference coordinate system, find the joint angles so that the manipulator can 
reach the desired prescribed manipulator hand position and orientation. (And if it can, how 
many different manipulator configurations will satisfy the same condition?) The inverse 
kinematics computation is often used to perform a kinematic path control in most industrial 
robots. The robot controller usually computes the joint angles of the manipulator from the 
desired pose of the manipulator end-effector at a sampling period of 20-30 milliseconds. 

The joint solution computation often raises questions about existence, uniqueness, sol­
vability, and computational efficiency of the solution [1-6],[8]. Due to the required computa­
tion time and solution accuracy, a closed-form joint solution, which yields a fixed computa­
tion time, is usually sought. A closed-form joint solution is a set of algebraic equations, each 
of which relates the given manipulator hand position and orientation to one of the unknown 
joint variables. Most industrial robots have simple geometry and satisfy one of the following 
sufficient conditions which make the closed-form joint solution possible: (1) Three adjacent 
joint axes intersecting at a point or (2) Three adjacent joint axes parallel to one another. 
PUMA t· robot arm satisfies the first condition while MiniMover* robot arm satisfies the 
second condition for finding the closed-form joint solution. However, if the geometry of a 

tPUMA is a trademark of Unirnation, Inc. 
+MlnlM"nvpr lC! Q tral'lPtnQrlr nf Mlt-rn1vl.t Tn,.. 
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robot does not satisfy one of these conditions, then some efficient iterative solutions [20-24] 
must be used to find the joint solution in real-time. 

In general, the inverse kinematic position solution can be obtained by various techniques 
such as inverse transform [3,11], screw algebra [12], dual matrices [13], dual quatemion [14], 
iterative [20-24], geometric approach [2,15], and the VLSI architecture approach [18-19]. 
Pieper [8] presented the kinematics solution for any six degree-of-freedom manipulator which 
has revolute or prismatic pairs for the first three joints and the joint axes of the last three 
joints intersect at a point. The inverse transform technique yields a set of explicit, non­
iterative joint angle equations which involve multiplications, additions, square root, and tran­
scendental function operations. The iterative methods can obtain robot independent joint 
solution, but they usually have some disadvantages: more computations than the closed-form 
solution, variable computation time and, more important, convergence problem, especially in 
the singular and degenerate cases. Furthermore, as with the inverse transform technique, 
there is no indication on how to choose the correct solution for a particular arm configuration. 

Traditionally, the joint solution is computed by the robot controller which is a 
multiprocessor-based system. In order to obtain a fixed computation time for the joint angle 
solution, time-consuming transcendental functions (sine, cosine, and arc tangent) are imple­
mented as table look-up at the expense of the solution accuracy. Based on an actual imple­
mentation on a multiprocessor system having a circuit to synchronize the CPUs and software 
scheduling for computing the joint solution [16-17], the best reported computation time was 
3.6 milliseconds for a six-jointed manipulator versus 20 milliseconds running on a uniproces­
sor system. 

A closed-form solution for PUMA-type robots is listed in Table 1 (Tables are placed at 
the end of the paper). These equations appear highly non-uniform since each joint angle is 
obtained through very distinct computations which contain a large set of elementary opera­
tions including scalar addition, multiplication, reciprocal, square root, trigonometric and 
inverse trigonometric functions (sine, cosine, and arctangent). One possible way to parallelly 
process these equations is to perform a functional decomposition such that each computa­
tional module can be processed by a CORDIC processor [18]. Unfortunately, this decompo­
sition shows only a limited amount of parallelism with a large amount of sequentialism in the 
flow of computation, and the CORDIC pipelined architecture presents a very expensive solu­
tion in computing the joint solution. 

To achieve higher parallelism for the inverse kinematics problem, the iterative method 
provides a better approach, since nearly every presented iterative method contains the compu­
tations of forward kinematics, Jacobian, and inverse Jacobian [20-24], which have been 
shown to be highly parallelized. Tsai and Orin [24] presented a parallel iterative algorithm 
for the inverse kinematics problem (see Figure 1). The basic algorithm of their method is 
based on the integration of the joint velocity and can be expressed by the following equations: 

q(t) = rl (q)x(t) (7) 
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q(t) = f 4('t)d't (8) 

where x(t) is the linear and angular velocity vector of the manipulator end-effector, 4(t) is the 
n-dimensional joint velocity vector of the manipulator, and rl(q) is the nx6 inverse Jaco­
bian. The inputs to this algorithm are the values of the desired manipulator end-effector posi­

tion and velocity Xd and Xd, respectively, and the outputs are the joint variables qi's, 
i = 1,2, ... , n. Details about this iterative method can be found in [24]. 

2.3. Inverse Dynamics Problem 

Since robot manipulators are highly nonlinear systems, in order to achieve better perfor­
mance in path tracking control, the dynamic model of the robot must be utilized in computing 
the generalized forces/torques to servo the joint motors. To perform a dynamic path-tracking 
control, the robot controller must repeatedly compute the required generalized forces/torques 
to drive all the joint motors. The problem of computing manipulator joint torques based on a 
manipulator dynamic model is known as the inverse dynamics problem [25-42] and can be 

stated as: Given the joint positions and velocities as {qi (t), qi (t)}?=l which describe the 
state of the manipulator at time t, expressed in the base (or reference) coordinate system, 

together with the desired joint accelerations {iIi (t)} }=1 at that time, solve the dynamic equa­
tions of motion for the joint torques { 'tj (t)} }=1 as follows: 

1:(t) = f (q(t), 4(t), ij(t)) (9) 

where 1:(t)=('tl,'t2, ... ,'tnl, q(t)=(ql,q2, ... ,qnl, 4(t)=(Ql,q2, ... ,Qnl, 

ij(t) = (ii 1 , ih, ... , fin l, and the superscript "T" denotes transpose operation on vectors 
and matrices. Obviously, the execution time for computing the generalized forces/torques 
partially determines the feasibility of implementing the control scheme in real time. 

There are a number of ways to compute the generalized forces/torques 1:(t) applied to 
the joint motors [25-42], among which the computation of joint torques from the Newton­
Euler (NE) equations of motion (see Table 2) is the most efficient and has been shown to pos­
sess the time lower bound of O(n) running in uniprocessor computers [27,38], where n is the 
number of degrees of freedom (DOF) of the manipulator. Based on the study of [27], it 
requires ( 150n - 48) multiplications and ( l3ln - 48) additions per trajectory set point for 
an n-jointed manipulator with rotary joints. It seems unlikely that further substantial 
improvements in computational efficiency can be achieved, since the recursive NE equations 
are efficiently computing the minimum information needed to compute the generalized 
forces/torques: angular velocity and acceleration, linear accelerations at the center of mass of 
the link, and joint forces and torques. Nevertheless, some improvements could be achieved 
by taking advantage of particular computation structures [29-30], customized 
algorithms/architectures for specific manipulators [31], parallel computations [37-42], and 
scheduling algorithms for multiprocessor systems [32-36]. 
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The recursive structure of the NE equations of motion is obviously well suited to stan­
dard single-instruction-stream single-data-stream (SISD) computers. It is, however, not an 
efficient parallel processing for single-instruction-stream multiple-data-stream (SIMD) com­
puters that are capable of performing many simultaneous operations. In order to overcome 
this inherent recurrence problem of the NE formulation, the NE equations of motion can be 
reformulated in a homogeneous linear recurrence form, and the "recursive doubling" algo­
rithm [71-72] for parallel solution of the linear recurrence problem can be utilized to compute 
the joint torques in SIMD computers. 

This reformulation of the NE equations of motion in a homogeneous linear recurrence 
form leads to an immediate question: What is the limitation of speeding up the computation 
of the inverse dynamics problem of a manipulator (based on the NE equations of motion) run­
ning on p processors, where 1 S; p S; n? This can be answered by the following time lower 
bound theorem for computing the inverse dynamics of an n-jointed robot manipulator paral­
lelly using p processors, where 1 S; p S; n. 

Theorem 1 (Time Lower Bound [38].) The shortest parallel time to evaluate the 
joint torques {'t/t)}j'=1 in equation (9) using p processors, 1 S;p S;n, is bounded 
below by 0 (k 1 r n /pl + k 2 rlog2 pl ), where k 1 and k 2 are specified constants. 

The proof of Theorem 1 can be found in [38]. Two extreme cases follow from Theorem 1: 

(a) If p = 1 (Le., using a uniprocessor computer), then the shortest computing time to calcu­
late the joint torques of an n-jointed manipulator is not lower than 0 (n). 

(b) If p = n, then the shortest parallel computing time is not lower than 0 (rlog2nl ), which is 
the information theoretic lower bound [73-74]. 

Theorem 1 indicates that the shortest parallel computing time for the inverse dynamics 
problem is bounded below by and not necessary equal to 0 (k 1 r n /pl + k 2 rlog2 pl). In other 
words, an efficient algorithm with p-fold parallelism may not have a computing time of the 
same order as 0 (k 1 r n /pl + k2 rlog2 pl). However, if a parallel algorithm possesses the time 
lower bound, then it must be the most efficient algorithm of evaluating the inverse dynamics. 
Since the NE equations of motion in Table 2 possess a time complexity order of O(n), it is 
the most efficient algorithm of evaluating the inverse dynamics running on uniprocessor com­
puters. However, Theorem 1 also indicates that a better solution is to find an efficient parallel 
algorithm, running on p processors, that possesses a time complexity order of 
o (k 1 r n /pl + k2 rlog2 pl). To achieve this time order, the NE equations of motion must be 
reformulated in a homogeneous linear recurrence form, and the recursive doubling algorithm 
for parallel solution of linear recurrence problems can be utilized to compute the joint torques 
in SIMD computers. 

The NE equations of motion are very efficient in evaluating the inverse dynamics 
whether they are formulated in the base coordinate frame or in the link coordinate frames. 
The clear advantage of referencing both the dynamics and kinematics to the link-coordinates 
is to obviate a great deal of coordinate transformations and to allow the inertia tensor to be 
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fixed in each link coordinate frame, which results in a much faster computation in a unipro­
cessor computer. However, the recursive structure of this formulation is in an inhomogene­

ous linear recursive form (see Table 2), e.g., Oli = aiOli-l + hi, where ai == iRi_1 and 

hi == iRi_l Zoqit. This inhomogeneous linear recursive form requires more calculations and 
arrangements for parallel processing than the homogeneous linear recursive form. The NE 
formulation in the base coordinates can be re-arranged and transformed into a homogeneous 

linear recurrence form (see Table 3), e.g., Oli = Oli-l + qi zi-l, which is more suitable for 
parallel processing on an SIMD computer, yielding a much shorter computing time. 

Kogge and Stone [71-72] developed an efficient technique, called recursive doubling, to 
solve a large class of recurrence problems on parallel (SIMD) computers. For the manipula­
tor dynamics problem (forward and inverse dynamics problems), we are only interested in the 

first-order linear recurrence problem. In general, the first-order linear recurrence problem can 
be stated as: Given ai "# 0 and hi, 0 ~ i ~ n, and the recursive equation 

(10) 

where * and + may be scalar (or matrix) multiplication and scalar (or vector or matrix) addi­
tion, respectively, find Xl, X2, .•. , Xn by a parallel algorithm running on an n-processor 
computer. If either ai'S are identities or hi's are null for all i, then this is the first-order homo­

geneous linear recurrence (HLR) problem. Otherwise, it becomes the first-order inhomogene­

ous linear recurrence (IHLR) problem. On a serial (SISD) computer, we first use the initial 
conditions to compute one new Xi, then using the new Xi to compute Xi+l, and so on until all n 

Xi'S elements are computed. The computation time is proportional to n (or of order 0 (n». 

The recursive doubling technique is especially suited for solving the linear recurrence prob­
lems on SIMD computers. It involves the splitting of the computation of such problem into 
two equally complex subproblems. The evaluation of these subproblems can be performed 
simultaneously in two separate processors. By repeating the same procedure, each subprob­
lem can be further split and spread over more processors. For the computation of a sequence 
of n elements, there will be (n + 1 )/2k parallel operations at the kth splitting until 

f log2 (n + 1)1 splittings. The resulting algorithm computes the entire series X 0 , Xl, '" , Xn 

in time complexity order of O(flog2(n+1)1) on an n-processor computer. Thus, recursive 
doubling achieves the time lower bound and hence is the best solution for the linear 
recurrence problem. 

For the inverse dynamics problem, we are only interested in the homogeneous linear 
recurrence problem of size (n+l); that is, Eq. (10) with all the hi's being null and ao "# iden­
tity. This can be solved by the recursive doubling algorithm as depicted in Figure 2 using the 
First Order Homogeneous Recurrence Algorithm (FOHRA). Similarly, the inhomogeneous 
linear recurrence problem can be solved by the First-Order Inhomogeneous Recurrence Algo­
rithm (FOIHRA). Both FORRA and FOIHRA algorithms are summarized in Figure 3, and 

t ai and hi are used here as either matrices or vectors which must be computed in advance. 
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both have a computational complexity of 0 (rlog2(n + 1)1 ) which is the time lower bound of 
the linear recurrence problem. 

In order to apply the recursive doubling algorithm to the NE equations of an n-jointed 
manipulator, the equations of motion must be reformulated in the base coordinates and re­
arranged to a homogeneous linear recursive form. The procedure in computing the inverse 
dynamics from the NE equations of motion formulated in the base coordinates as a linear 
recurrence problem is given in Table 4. Applying this parallel NE (PNE) procedure to the 
PUMA robot arm in [2], the total computational complexity of the parallel algorithm indi­
cates 27 rlog2n 1 + 116 scalar multiplications and 24 flog2n 1 + 9 rlog2(n+ 1)1 + 84 scalar 
additions. If n = 6, then the complexity of the parallel NE algorithm is 197 multiplications 
and 183 additions as compared with the complexity of the NE algorithm running on a unipro­
cessor [38]: 852 multiplications and 738 additions. Moreover, even if n becomes large, say 
n = 12 (for redundant robots), then the number of multiplications and additions increases only 
by 27 and 33, respectively. 

2.4. Forward Dynamics Problem 

The manipulator forward dynamics problem [43-47] concerns the determination of the 
motion of the manipulator from a set of applied joint forces/torques and can be stated as [45]: 
Given an input force/torque vector t(t) and a vector of external forces/torques exerted on the 

last link: of the manipulator k(t), compute the joint acceleration vector ij(t), based on an 
appropriate manipulator dynamic model, from values of t(t), k(t), the joint position q(t), and 

the joint velocity q(t). The resultant ij(t) is then integrated to give new values of q(t) and 
q(t), and the process is repeated for the next input force/torque vector. Thus, the forward 
dynamics problem is essential for the real-time dynamic simulation of robot arm motion. 

The forward dynamics problem is more computational intensive than the inverse dynam­
ics problem. At the present time, there are several methods available to solve this problem 
[43-44]. Among these, the composite rigid-body method [43] (see Table 5), based on the 

computation of the NE equations of motion, is widely used to develop efficient parallel algo­
rithms [45-47]. All these methods are analyzed and compared in [45]. Several reasons can 
be accounted for this popular use of the composite rigid-body method. First, the composite 
rigid-body method is the most efficient for a reasonable number of degrees of freedom of the 
manipulator (i.e., for most industrial robots, n ~ 12) [45] and is suitable for parallel process­
ing. Second, the composite rigid-body method also computes the inertia matrix of the mani­
pulator. Hence, the inertia matrix and the joint acceleration vector can be obtained at the 
same time using the same algorithm. This is of great advantage because various model-based 
control schemes utilize the inertia matrix [48-49]. Another advantage for the composite 
rigid-body method is that efficient parallel algorithms for the inverse dynamics computation 
have been well developed and can be used to speed up the computation time. In fact, most of 

the forward dynamics parallel algorithms are all based on the composite rigid-body method 
and are much alike [45-47]. Essentially, they all utilize the recursive doubling technique 
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[71-72],[38] to refonnulate the serial algorithm of the composite rigid-body method into the 
linear recursive equation fonn to reduce the order of computation. What make these parallel 
algorithms to have different computation complexities are the designed computer architec­
tures and/or the number of processors used in their architectures. 

Let us consider this composite rigid-body method here and try to characterize the algo­
rithm. The dynamic equations of motion of a manipulator can be written as 

and can be re-written as 

H(q)ij(t) + C(q, q)q(t) + G(q) = 't(t) 

H(q) ij(t) = 't(t) - b 

b = C(q, q)q(t) + G(q) 

(11) 

(12) 

(13) 

where H(q) is an nxn symmetric, positive-definite inertia matrix, G(q) is the gravity vector, 

C(q, q) is the Coriolis and centrifugal force/torque vector, 't(t) is the applied force/torque 

vector, and b is the bias torque vector due to the gravity G(q) and the velocity tenn C(q, q). 

The biased vector b may be solved by simply setting ij equal to 0 when computing the joint 
torques from the inverse dynamics, using the parallel NE procedure in Table 4. That is, from 

Eq. (11), b = 'tl ij={)' The algorithm to solve for the joint acceleration ij(t) from the above 
equations consists of three parts. First, the inertia matrix H(q) is computed based on the com­
posite rigid-body method. Second, the biased vector b is obtained from the parallel computa­
tion of the inverse dynamics using the parallel NE procedure in Table 4, and finally, the sys­

tem of linear equations for ij(t) is solved. The algorithm for computing the joint accelerations 
is shown in Table 5 which is very similar to that of the inverse dynamics. 

2.5. Forward Jacobian Problem 

The Jacobian matrix [50-59], which is often used in the velocity analysis of a mechan­
ism, specifies the mapping from the joint velocities of the manipulator in the joint-variable 
space to the linear and angular velocities of the manipulator end-effector in the Cartesian 
space as in 

. ~ [V(t) 1 . 
x(t) = Ol(t) = J(q)q(t) (14) 

where v(t) and Ol(t) are, respectively, the linear and angular velocities of the manipulator 

end-effector, q(t) is the n-dimensional joint velocity vector of the manipulator, and J(q) is the 
6xn manipulator Jacobian matrix and it is a function of the joint variables. Furthennore, the 
transpose of the Jacobian matrix relates static contact forces and moments to the set of joint 
torques as 

't(t) = JT (q)F(t) (15) 

where F(t) ~ (Fx, Fy, Fz, Mx, My, Mzl is a 6-dimensional static force/moment vector, and 
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't(t) is an n-dimensional joint torque vector. From Eq. (14), the forward Jacobian problem 
can be stated as: Given the 3x3 rotation transformation matrices i-l Ri, 

[
COS Si -cos (Xisin Si sin (Xi sin Si 1 

i-l Ri = sin Si c~s (XicOS Si -sin (XiCOS Si 

o sm(Xi cos (Xi 

for i = 1, ... , n, 

and the position vector from the origin of link i coordinate frame to the origin of link (i -1) 

coordinate frame with respect to the link i coordinate frame ip7 , i = 1, ... , n, determine 

the Jacobian matrix. 

Existing methods in computing the Jacobian are mostly confined to uniprocessor com­
puters. In particular, Renaud [50], Waldron [51], Orin/Schrader [56], and Yeung!Lee [57] 
exploited the linear recurrence characteristics of the Jacobian equations. These methods dif­
fered from ea«h other only by a different selection of the reference coordinate frame for com­
putation. The reference coordinate frame is selected such that all the vectors and matrices 
and the Jacobian computed are referred to that reference coordinate system. Specifically, for 
an n-jointed robot manipulator, Waldron's method corresponds to the reference coordinate 
frame k being selected at the base coordinates k = 0, Renaud's method corresponds to 
k = n12, Orin/Schrader's method corresponds to selecting the reference coordinate frame at 
the end-effector coordinates k = n, and Yeung!Lee's method is the Generalized-k, where 
o ~ k ~ n. They all have the computational order of O(n) for an n-jointed manipulator. The 
Generalized-k algorithm developed by Yeung and Lee [57] is shown in Table 6. 

Other methods for computing the Jacobian include Uicker [20], Whitney [53], Paul et al. 
[55], Vukobratovic and Potkonjak [52], and Fu et al. [2]. Uicker [20] obtained the Jacobian 
in terms of the differential change of transform elements. Whitney [17] computed the Jaco­
bian based on vector methods. Paul et al. [55] developed the differential matrix approach to 
obtain the Jacobian directly from the homogeneous transformation matrices. Vukobratovic 
and Potkonjak [52] calculated the n individual columns of the Jacobian matrix from the base 
coordinates to the end-effector coordinates expressed with respect to the end-effector coordi­
nates. In Fu et al. [2], the Jacobian is computed as a by-product from the computation of the 
Newton-Euler equations of motion in solving the inverse dynamics problem. 

Recently, Orin et al. [58] developed pipeline and parallel algorithms for configuring a 
systolic array of processors to implement the Jacobian. (n + 1)/2 time units are taken to 
obtain the Jacobian for the pipeline algorithm, and 2n processors are used with an initiation 
rate equals to 2. The parallel algorithm, which is based on a "divide-and-conquer" strategy, 
reduces the computational order to o (log2(n + 1)). Hypercube interconnection network is 
selected for connecting the processors. Yeung and Lee [57] also designed two VLSI systolic 
pipelines for the computation of the Jacobian matrix. A linear VLSI systolic pipeline is 
designed to implement the Generalized-k algorithm, and a parallel VLSI systolic pipeline is 

designed to implement the Parallel Forward And Backward Recursive Doubling algorithm. 
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2.6. Inverse Jacobian Problem 

The inverse Jacobian problem [60-69] can be stated as: Given the linear and angular 
velocity vector of the manipulator end-effector in the Cartesian space, find the corresponding 
joint rates. The computation of inverse Jacobian is useful in the resolved motion rate control 
(RMRC). In the RMRC, the manipulator end-effector (or hand) is commanded to move along 
a desired Cartesian direction in a coordinated rate control, the motions of the various joint 
motors are combined and resolved into separately controllable hand motions along the world 
coordinate axes. This implies that several joint motors must run simultaneously at different 
time-varying rates in order to achieve the desired, coordinated hand motion along anyone 
world coordinate axis. This RMRC enables the user to specify the direction and speed along 
any arbitrarily oriented path for the manipulator to follow and greatly simplifies the 
specification of the sequence of motion for completing a task. Unfortunately, the computa­
tional bottleneck of this kinematic control scheme is the real-time computation of the inverse 
Jacobian. 

The most direct method of obtaining the inverse Jacobian is to calculate the Jacobian 
matrix and then invert the matrix. Unfortunately, the Jacobian matrix becomes singular at the 
robot's deadpoints and the inverse of the Jacobian is not defined because the Jacobian matrix 
is not of full rank. Moreover, since the Jacobian is a 6xn matrix, its inverse does not exist 
when n is not equal to six. For these unpleasant cases, the concept of generalized inverse has 
been applied [60]. The inverse Jacobian algorithms for a general manipulator can be divided 
into two categories. One is to calculate the inverse or the generalized inverse Jacobian expli­
citly [22],[61]. The other is to consider the inverse Jacobian problem as a system of linear 
equations and solve the joint rate from the Cartesian velocity implicitly [21],[24],[62]. For 
practical purposes, the latter approach is easier to be parallelized due to the use of some stan­
dard techniques to solve a system of linear equations such as the Gaussian elimination 
method. Like the inverse kinematics problem, few parallel algorithms for the inverse Jaco­
bian computation have been developed. 

The algorithm to compute the joint rates is different for manipulators with different 
number of degrees of freedom. If n = 6 and the manipulator is at a non-singular location, 
then the Jacobian matrix is square and Eq. (14) can be solved directly as a system of linear 
equations by simply applying the Gaussian Elimination method [69]. If n is less than six, 
then Eq. (14) is an overdetermined system and the Moore-Penrose pseudo-left inverse may be 
employed to give the least-squares solution 

J-L = (JTJr1 JT (16) 

where rL is the Moore-Penrose pseudo-left inverse of the Jacobian matrix J. If n is greater 
than six, then Eq. (14) is an underdetermined system and the Moore-Penrose pseudo-right 
inverse can provide the minimum energy solution 

(17) 

where rR is the Moore-Penrose pseudo-right inverse of the Jacobian matrix J. For practical 
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purposes, J-l, J-L or J-R are not computed explicitly through the above equations. Rather, 
they are implicitly used to obtain the joint rates, for example, via Householder reflections [63] 
or singular value decomposition (SVD) technique [64-661or residue arithmetics [61,67-68]. 
Hence, the inverse Jacobian computation reduces to just a general type of system of linear 
equations. 

The solution of a system of linear equations is the most common computational problem 
in linear algebra [69,75-76] and there has been a long tradition of research on parallel algo­
rithms for solving various types of systems of linear equations whether the matrix is square or 
rectangular. The techniques to solve the system of linear algebraic equations are all rather 
regular and homogeneous and can map quite naturally onto many types of multiprocessor 
architecture, especially one- or two-dimensional arrays of processors. Generally speaking, 
there are two approaches for solving linear systems [75-76]. The first approach is the direct 
method which usually includes two processes: factorization of the matrix into a triangular 
matrix and solving the triangular systems of equations. The second approach is the iterative 
method which is amenable for parallel processing. 

3. CHARACTERISTICS OF PARALLEL ALGORITHMS 

The above six basic robotics computations are required at various stages of robot arm 
control and computer simulation of robot motion. Unfortunately, they are all computational 
intensive tasks and constitute the major computational bottleneck in the real-time control of 
robot manipulators. In the past decade, there has been a growing interest in speeding up these 
computations. Most of the past research focused on the use and/or design of parallel architec­
tures such as multiprocessor-based systems and special-purpose VLSI chips with parallel pro­
cessing and pipelined processing techniques [9-10], [16-19],[29-42],[45-47],[57-59],[61]. 
Since efficient utilization of parallel architectures rests on the development of proper parallel 
algorithms, common features and characteristics of these robotics parallel algorithms must be 
-identified, which can be used to understand their inherent parallelism and architectural 
requirements. This in turn leads to the design of algorithmically-specialized parallel architec­
tures for the efficient computation of these robotics algorithms. 

In order to examine the characteristics of the six basic robotics parallel algorithms, a set 
of features which have the greatest effects on the execution of parallel algorithms is defined 
[70]. 

• Type of parallelism. Two levels of parallelism can be identified. 

(a) lob-level parallelism. The original algorithm is reformulated to a parallel process­
able form. In this level, the variables carrying the same kind of information but with 
different indices (e.g., for different links or joints of a manipulator) are processed 
parallelly. Due to the nature of the robot's serial link structure, variables represent­
ing the same physical meaning are defined for each link such as joint velocities, joint 
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accelerations, and joint torques. Usually, the same class of variables are produced 
thrOugh an identical computational procedure but with different set of data. This 
property is called uniformity of operations as defined below. So the job-level paral­
lelism will often be amenable to the single-instruction-stream multiple-data-stream 
(SIMD) implementation and usually the required number of processors depends on 
the number of degrees of freedom of the manipulator (i.e., one processor for each 
joint). 

(b) Task-level parallelism. The original algorithm is decomposed into multiple subtasks. 
While the computation within a subtask is serial, the number of subtasks that can be 
processed concurrently is maximized by using some scheduling techniques. Obvi­
ously, this implies multiple-instruction-stream multiple-data-stream (MIMD) opera­
tions. Furthermore, for this level of parallelism, a subtask usually performs the same 
computation for different set of data, and hence the operation can be pipelined. An 
advantage of this task-level parallelism is that the required number of processors is 
independent of the number of degrees of freedom of the manipulator. 

• Degree of parallelism (Granularity). Three levels of granularity are distinguished. In 
the large grain granularity, the parallelism is performed at the algorithmic level. That is, 
only the parallelism between different segments or subtasks is considered. For the medium 
grain granularity, the concurrency is considered at the operation level and the parallelism 
is performed based on some basic mathematical operations such as vector cross product 
and matrix-vector multiplication. If we consider the implementation of parallelism within 
the basic arithmetic operations, then the fine grain granularity is achieved. For example, 
a 4x4 systolic array can be designed for basic matrix operations in robotics application. 
Different degrees of parallelism often imply different synchronization requirements. The 
finer the granularity is, the more frequent synchronization is required. Most researchers 
consider the degree of parallelism an important feature for characterizing the basic robot­
ics parallel algorithms. 

• Uniformity of operations. A robotics algorithm is said to possess uniformity of opera­
tions if the required computations for some set of variables, especially the joint variables, 
are uniform. An algorithm with operation uniformity can be implemented on an SIMD 
machine with higher efficiency. 

• Fundamental operations. Two classes of operations are used in robotics algorithms. 
One is basic matrix-vector operations including vector addition, inner product, and cross 
product The other is trigonometric function. The identification of basic operations per­
formed in the algorithm will dictate the processor capabilities needed. 

• Data dependency. Three kinds of data dependency are classified for robotics algo­
rithms: local dependency or neighborhood dependency, special type dependency, and 
global dependency. The local dependency means that the required operands in an opera­
tion come from its neighborhood; for example, from the results of last operation or using 
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the same operands of last operation. The special type dependency is defined for some 
special equation or problem. There are some special types of data dependency that are 
peculiar and inherent to the robotics algorithms. Among them, the homogeneous (or 
inhomogeneous) linear recursive type of dependency which describes the data depen­
dency in a homogeneous (or inhomogeneous) linear recursive equation appears most fre­
quently. This linear recurrence structure plays a major role in the robotics algorithms 
because the variables of a joint are usually related to the corresponding variables of its 
adjacent joint due to the robot's serial link structure. Other special types of data depen­
dency are defined for some well-known problems; for example, system of linear equations . 
and Column-Sweeping algorithm for a triangular linear system. Besides the above two 
data dependencies, the global dependency means that the results of some operations may 
be required by other operations or equations that may appear in other places of the algo­
rithm. Since few algorithms possess absolutely one kind of data dependency, we can just 
identify whether an algorithm is local data dependency oriented or not. The data depen­
dency in an algorithm usually dictates memory organization, data allocation and com­
munication requirements . 

• Communication requirement. The communication requirement decides the required 
interconnection type between processor and processor or between processor and memory. 
Three types of interconnection are considered: one-to-one connection, permutation and 
broadcast connections. It will be shown that the permutation capability is the most 
important for the efficient computation of robotics parallel algorithms and most of the 
permutation requirements are of regular types; for example, uniform module shifts con­
nection. Of course, the exact required interconnection type for each computation in an 
algorithm depends on many factors such as task assignment of each processor, data allo­
cation in the memories, and data dependency of each computation. Hence, the exact 
required interconnection type can only be decided at the time of the algorithm­
architecture mapping process. In examining robotics parallel algorithms, only rough con­
nection requirements can be observed. 

4. CHARACTERIZATION OF BASIC ROBOTICS ALGORITHMS 

If we consider these six basic robotics computations as a set of tasks that we need to 
compute for the control of robot manipulators, then based on the set of features defined in the 
last section, the parallel algorithm of each basic robotics algorithm will be examined and 
analyzed to find the common features and characteristics among them. The results will be 
useful for better understanding of the inherent parallelism within robotics computations and 
for designing suitable parallel architectures for their computations. 

For the forward kinematics computation, considering the type of parallelism for the 
matrix multiplication equation in Eq. (3), it is natural to perform the job-level parallelism. 
That is, apply the recursive doubling technique to n linear array processors to solve the 
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homogeneous linear recursive equations at the time· complexity of O(rlog2n 1). The funda­
mental operations of this problem are 4x4 matrix multiplication, and more importantly, the 
sine and cosine functions (trigonometric function calculations). The important data depen­
dency is only the HLR type and the communication requirement is the permutation capability 
to provide the recursive doubling interconnection. 

For the inverse kinematics computation, the closed-form solution in Table 1 shows that 
the data dependencies among these equations are irregular and global, and the required com­
munication capabilities are one-ta-one and broadcast. These irregular and inhomogeneous 
equations are obviously not suitable for the job-level parallelism. The parallel iterative algo­
rithm presented by Tsai and Orin [24] provides a higher parallelism and is amenable for 
parallel processing at the job-level parallelism due to its step by step nature, although some 
steps can only be processed serially; e.g., convergence testing. As the general property of 
iterative methods, the data dependency tends to be local; however, convergence testing neces­
sarily involves gathering global information and this requires global communication capabil­
ity. 

For the inverse dynamics computation, using the NE equations of motion in Tables 2 
and 3, one possible approach to parallelly process these equations is to decompose them into 
some computational modules, each of which calculates the kinematic and dynamic variables 
for all the joints such as angular velocities, angular and linear accelerations, joint forces and 
moments. For example, equations (3-a) to (3-i) in Table 3 are treated as consisting of nine 
computational modules. Then each one of these computational modules is assigned to one 
processor and different modules are processed concurrently. This type of parallelism is the 
task-level parallelism as defined in section 3. However, if we observe the structure of these 
equations more carefully, one can find that equations (3-a), (3-b), (3-c), (3-g), and (3-h) are 
all in HLR form, and solving a linear recursive equation on a uniprocessor computer has a 
time complexity of O(n) as indicated by Theorem 1. This time complexity can be reduced to 
o (rlog2n 1) if the recursive doubling technique is applied to n processors as discussed above. 
Moreover, due to the data precedency, some processor(s) will be idle for waiting the required 
data calculated by other processors. For example, not until the processor which is assigned to 
compute the angular velocities COj , i = 1 , 2, ... ,n, completes its work, no other processors 
can start initiating their computations. This means that the distribution of tasks among pro­
cessors will lead to low processor utilization. So a better parallelization approach is to per­
form the job-level parallelism, that is, n processors collaborate to compute each equation in 
Table 3. Hence, final results of each equation are produced at the same time and no data pre­
cedency problem needs to be worried about as long as these equations are processed in order. 
The above parallelization is considered at the algorithmic level; that is, at the large grain 
granularity. Moreover, since the procedures to calculate the variables with the same 
kinematic or dynamic meaning but for different links, e.g., COj , i = 1 , 2, '" ,n, are identi­
cal, the concurrency can be achieved at each basic operation (i.e., each matrix-vector opera­
tion). This means that the NE equations of motion possess the uniformity of operatiohs.So, 
as far as the degree of parallelism is concerned, these NE equations can be processed with 
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parallelism at the medium grain granularity. Furthermore, parallelism at the fine grain granu­
larity is also possible because the fundamental operations of the NE equations are some basic 
matrix-vector operations with fixed data size (e.g., 3x3 matrix or 3xl vector), so a special­
purpose processor can be designed to perform these operations parallelly. 

Considering their data dependencies, a number of the NE equations are in homogeneous 
linear recursive form and so possess the so called dependency of HLR type. Further observa­
tions indicate that although the outputs or operands of one equation are usually used as 
operands of the next equation, which means local data dependency, these equations have glo­
bal data dependency because some variables appear in many equations irregularly. For 

instance, Ci)i and Wi are required in equations (3-c), (3-d), and (3-f), and Zi-l appears in equa­
tions (3-a), (3-b), (3-c), and (3-i). A rough observation indicates that the most important com­
munication requirement is permutation and no broadcast capability is necessary because there 
is no constant or variable which is common to all the manipulator links. Moreover, the 
required permutation capabilities are the one which can provide the recursive doubling tech­
nique to solve HLR equations and the one which connects a processor to its corresponding 

memory module (straight connection) or to its neighboring processor and corresponding 
memory module (nearest neighborhood connection) because some joint variables relate to the 
variables of its own joints or its adjacent joint. For example, equation (3-d) in Table 3, ai is a 

function of Ci)i, Wi, si, and Vi, all from its own link i; equation (3-b) in Table 3, the angular 

acceleration of link i, Wi, is a function of Wi-I, Zi-l, iii, Ci)i-l, and qi, among which Zi-l and 

Ci)i-l are variables of link (i -1), and Wi-l forms the linear recursive relation. So the required 
permutation types are regular. 

For the forward dynamics computation, the equations in Table 5 possess uniformity of 
operations. Equations (5-a) to (5-f) are applied to different joint j. That means the variables 
with different index j which corresponds to the jth joint, e.g., cl , c2, ... , cn-l, are obtained 
through identical computation with distinct operands. Equation (5-i) is solved via the inverse 
dynamics algorithm which has been shown to be highly operational uniform. Equations (5-g) 
and (5-h) are equations with two indices i and j, so they can be viewed as "two-dimensional" 

problems. They also posses uniform computation because for each j, 1::; j ::; n, all nij'S (or 
hi/s), 1::; i ::; j, are obtained through identical computation. We identify this uniformity 
because parallel architectures can be designed to make use of this operational uniformity. 
Finally, equation (5-j) in Table 5 is a system of linear equations which is a very common 
computational problem discussed by many researchers [63],[69],[75-76]. This system of 
linear equations has also shown its regularity. 

As the type of parallelism is concerned, it is natural to perform the job-level parallelism 
based on the above discussion. Equations (5-a) and (5-c) in Table 5 are in HLR form. Equa­
tion (5-b) is in IHLR form. Equation (5-g) can be considered as a set of homogeneous linear 
recurrence equations (SHLR) [45]. Equation (5-i) is actually an inverse dynamics problem 
which can be solved by the parallel NE procedure in Table 4. Each of these equations is suit­
able to be implemented on O(n) or O( n 2 ) array processors [45-47]. 



www.manaraa.com

257 

The fundamental operations of the forward dynamics problem are basic matrix-vector 
computations and a number of scalar additions, subtractions, multiplications, and reciprocal 
especially for the linear system solver. The degree of parallelism is considered at the large 
grain granularity in most of the past research on this problem. However, the forward dynam­
ics equations can also be parallelized at the medium or fine grain granularities as the inverse 
dynamics problem can. 

For the data dependency, they are more complex than the inverse dynamics problem due 
to some special types of data dependency. Besides the HLR type, there are the nn.,R type, 
the set of homogeneous linear recursive equations type, and the linear system solver (LSS) 
type dependencies. Correspondingly, the communication requirements are also stricter. The 
major requirement is still the permutation capability. However, in order to implement the 
linear system solver, the broadcast and one-to-one connections are inevitable. The parallel 
composite rigid-body algorithm for the forward dynamics problem is shown in Table 7. 

For the forward Jacobian computation, the equations of the the Generalized-k algorithm 
shown in Table 6 show high uniformity of operations. In particular, equations (6-a)-(6-d) are 
all in homogeneous linear recursive form, among which equations (6-a) and (6-b) are the for­
ward recursive equations, and equations (6-c) and (6-d) are the backward recursive equations. 
In fact, the forward and backward recursive equations can be processed together. For exam­
ple, equations (6-a) and (6-c) can be computed simultaneously to produce all the matrices 
kRi' i == 1, ... ,n, and so do equations (6-b) and (6-d). Although the forward and back­
ward recursive equations can be processed together, this will require some irregular data 
dependencies [57]. We call this special type as forward and backward homogeneous linear 
recursive (FBHLR) type data dependency. This requires the communication requirement to 
include irregular permutation and broadcast. The parallel forward Jacobian algorithm is 
shown in Table 8. 

For the inverse Jacobian computation, it involves solving a system of linear equations. 
The approach of factorization of the matrix into a triangular matrix and solving the triangular 
systems of equations possess~s global data dependency because each successive column, row, 
or submatrix of the matrix factors depends on all the preceding columns, rows, or submatrices 
and the broadcast communication capability is often required. The second approach is the 
iterative method which has the advantage of local data dependency and is also amenable for 
parallel processing. However, in general, the iterative method can not be faster than the 
direct method. The common fundamental operations include scalar adds, subtracts, multipli­
cation, vector operations (e.g., inner products), and reciprocal. Parallelism can be performed 
at the fine grain granularity with subtasks of complexity 0(1) as on systolic and wavefront 
processor array [77], or at the medium grain granularity with subtasks of complex O(n) as on 
a linear array of processors [77]. 

The characteristics of the six basic robotics algorithms are tabulated in Table 9. This 
table shows that these six basic robotics algorithrris do possess some important common 
features and characteristics. This is especially true for the inverse dynamics, the forward 
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dynamics, the forward kinematics and the forward Jacobian computations for the following 
three reasons. First, they are all suitable to be parallelized at the job-level and the paralleliza­
tion can be performed at the large, medium and fine grain granularities simultaneously, 
although different granularities are emphasized in each individual algorithm. Second, their 
operations are all uniform for the variables corresponding to each joint, and the most impor­
tant fundamental operation is matrix-vector operation. Finally, the strongest common feature 
is that they are all in homogeneous linear recursive form, for which the recursive doubling 
technique can be applied to achieve the time lower bound of O(rlog2n 1). The communica­
tion requirement indicates that one-to-one and some regular or irregular permutation capabili­
ties are required for these four computational problems and the broadcast capability is neces­
sary for the forward dynamics and the forward Jacobian algorithms. This indicates that some 
efficient, versatile network is required in the parallel architecture for their computations. 

The inverse Jacobian and the inverse kinematics computations may seem less common 
to the former four algorithms. However, if proper or less efficient methods to solve these two 
problems are chosen individually, then these two algorithms may possess some common 
features to the other four algorithms, and a common parallel architecture can be designed to 
match all these common characteristics for the computation of these six robotics algorithms. 
From Table 9 and discussions in the previous sections, we found that either the direct method 
or the iterative method for the inverse Jacobian is a proper candidate for parallel processing, 
while the direct method is more efficient with somewhat complex data dependencies. For the 
inverse kinematics problem, only the iterative method possesses regular properties similar to 
the other four computations. 

A common feature of today's research on robotics computational problems is that a 
specific problem, mostly the inverse dynamics or the inverse kinematics, is studied at a time 
and usually an algorithmically-specialized architecture or machine is developed for this par­
ticular algorithm. Of course, the special architecture designed by this approach can make the 
most use of the parallel properties of a specific algorithm. However, most advanced robot 
control schemes always require to solve the combination of some or all of the six basic 
robotic computation problems. Hence, the above characterization of the six basic robotics 
algorithms can be used to design a parallel architecture that best matches the common 
features of these robotics algorithms [70]. 

5. CONCLUSION 

The six basic computations in the control of robot manipulators are kinematics, dynam­
ics, Jacobian, and their corresponding inverse. The parallel algorithms for these computa­
tions were examined and analyzed. Their common features were characterized based on six 
well-defined features that have greatest effects on the execution of parallel algorithms. These 
features include type of parallelism, degree of parallelism (granularity), uniformity of opera­
tions, fundamental operations, data dependency, and communication requirement. Their 
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characteristics are summarized in Table 9. It is found that the inverse dynamics, the forward 
dynamics, the forward kinematics and the forward Jacobian computations possess highly reg­
ular properties and they are all in homogeneous linear recursive form. The inverse Jacobian 
is essentially the problem of a system of linear equations. Its two general approaches, the 
direct and iterative methods, are both uniform. The closed-form solution of the inverse 
kinematics problem is obviously non-uniform and robot dependent The iterative algorithm 
for the inverse kinematics problem seems uniform and the parallel portions of the algorithm 
involve the forward kinematics, the forward Jacobian, and the inverse Jacobian computations. 
The characterization of the six basic robotics algorithms can be used to design a common 
architecture for the computation of these robotics algorithms. 
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Figure 1. Iterative method for inverse kinematics solution. 
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Algorithm FOHRA (First-Order Homogeneous Recurrence Algorithm). Given the 
tenns ai, 0 :s; i :s; n, this algorithm solves the homogeneous linear recurrence fonn in equation 
(10) with all the bi being null by the recursive doubling algorithm. 

Fl. [Initialization.] Given the tenns aj, O:S; i :s; n, let X(k)(i) be the ith sequence at the kth 

splitting and s = r log2 (n + 1)1. Set the sequence at the initial step, 
x (0) (i) +- aj, O:S; i :s; n. 

F2. [Compute Xi parallelly.] 
for k +- 1 to s, do 

end lfor} 

{

X(k-1)(i - 2k- 1) * X(k-1)(i) , if2k- 1 :s; i :s; n 

X(k)(i) = 
X(k-1)(i) , if O:S; i < 2k- 1 

Set Xi +- X(s)(i), 1:S; i :s; n. 

END FOHRA. 

Algorithm FOIHRA (First-Order Inhomogeneous Recurrence Algorithm). Given 
ai, bi, O:S; i :s; n, this algorithm computes the first-order inhomogeneous linear recurrence 
equation (10) using the recursive doubling technique. 

11. [Initialization.] Given ai, bi, O:S; i :S n, let X(k)(i),y(k)(i) be the ith sequences at the 
kth level, and setX(O)(i) = ai, y(O)(i) = bi, for O:S; i :s; n, and s =rtog2(n+1)1. 

12. [Compute Xi parallelly.] 

for k +- 1 to s, do 

X(k)(i) =' I , {
X(k-1)(. _2k-l) * X(k-1)(.) 

X(k-1)(i), 

if2k- 1 :S;i:S; n 

ifO:S;i<2k- 1 

y(k)(i) = 'I , , {
X(k-1)(') * y(k-1)(' _2k-1) + y(k-1)(.) 

y(k-1)(i) , 

if2k- 1 :s; i:S; n 

if 0 :S i < 2k- 1 . 

end {for} 

Set xi +- y(s)(i), 1:S; i :s; n. 

End FOlliRA. 

where "*,, in step 12 denotes an associative operator. 

Figure 3. First-order homogeneous and inhomogeneous recurrence algorithms. 
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Table 1. Inverse Kinematic Position Solution for PUMA-Type Robots 

Given the position/orientation of the manipulator hand as: 

T = :::::: ;:1 = [0 sap] 
nz Sz az pz 0 0 0 1 

o 0 0 1 . 

The joint angle equations for the PUMA-type robot to position its end-effector as desired are 
[11]: 

9 -I [W2fllP - WIPZ] 
23 = tan 

Wdllp + w2Pz 

92 = 923 - 93 

where WI = a2C3 + a3, w2 = d 4 + a2S3, Ci == cos 9i, Si == sin 9i , Cij == cos (9i + 9j ), and 
Sij == sin (9i + 9j ). 
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Recursive Newton-Euler Equations of Motion Referenced to the Link Coordi­
nate Systems 

Forward (or Outward) Equations: i = 1,2, ... ,n 

i • i i-l' .. i-l . . 
Romi = R i- l [ Romi-l + (qj'Zo + Romi-l x qizO ) ( 1 - Ai )] 

iRovi = (iRowi) X (iROp; ) + (iRomi ) x [( iRomi) x ( iRop; )] 

+ iRi_l (iiiZoAi + i-l ROVi-l ) + 2 ( iRomi ) x ( iRi-l zOqi )Ai 

Backward (or Inward) Equations: i = n , n -1, ... , I 

iRof - iR (i+lRof) iR i - i+l i+l +mi Oai 

iRODi = iRi+l [ i+l RoDi+l + ( i+l Rop; ) x (i+l Rofi+l )] 

+ (iRop; + iRosi) x (mi iRoai) 
. 0 .•. . 0 . 

+ ('Roli Ri)( 'ROmi ) + ('ROmi) x [( 'Roli Ri )( 'ROmi)] 

where Zo = (0,0, ll, and all the variables are referenced to link i coordinate frame: 

Ai: equal to 0 if link i is rotational; equal to 1 if link i is translational. 

bi: viscous damping coefficient for joint i. 

'ti: torque exerted by the actuator at joint i if rotational, force if translational. 

qi: joint variable of joint i (9i if rotational and di if translational) 

mi: total mass of link i. 

iRO mi: 

iRowi: 

iR . 
OVi: 

iRoai: 

angular velocity of link i. 

angular acceleration of link i. 

linear acceleration of link i. 

linear acceleration of the center of mass of link i. 
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i Ro fi : force exerted on link i by link i-I. 

i Ro Dj ; moment exerted on link i by link i-l. 
. * 
I Ro Pi: origin of the ith coordinate frame the origin of the (i -l)th coordinate system 

expressed with respect to the link i coordinate frame. 

iRo Si : position of the center of mass of link i from the origin of the ith coordinate sys­
tem expressed with respect to the link i coordinate frame. 

. 0 
IRo Ii Ri: inertia matrix of link i about its center of mass with reference to the link i 

coordinate system (it is a constant). 

Initial conditions: 
o o· 0 Ro roo = Ro roo = 0, Ro = I3x3 · 

ORo Vo = g = (gx, gy , gz l to include gravity, and I g 1= 0.98062 mls2 • 

n+l Ro fn+l = fe = external force fe exerting on link n. 
n+l Ro Dn+l = De = external moment De exerting on link n. 
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Table 3. Recursive Newton-Euler Equations of Motion Referenced to the Base Coordi­

nate System 

Forward (or Outward) Equations: i = 1, 2, ... ,n 

ffij = ffij-l + qjZj-l ( 1 - "'j ) (3-a) 

. . * ( * ) . Vj = ffij X pj + ffij X ffij X pj + Vj-l 

Backward (or Inward) Equations: i = n , n -1, ... , 1 

where all the variables are referenced to the base coordinate frame: 

"'j: equal to 0 if link i is rotational; equal to I if link i is translational. 

b j : viscous damping coefficient for joint i. 

ffij: angular velocity of link i. 

ffij: angular acceleration of link i. 

vi: linear acceleration oflink i. 

aj: linear acceleration of the center of mass of link i. 

F j : total external force exerted on link i at the center of mass. 

N j : total external moment exerted on link i at the center of mass. 

fi : force exerted on link i by link i-I. 

(3-b) 

(3-c) 

(3-d) 

(3-e) 

(3-f) 

(3-g) 

(3-h) 

(3-i) 
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Di: moment exerted on link: i by link i -1. 

'ti: torque exerted by the actuator at joint i if rotational, force if translational. 

Zi: Z component of the origin of the ith coordinate frame. 

qi: joint variable of joint i (Si if rotational and di if translational) 

* Pi: origin of the ith coordinate frame the origin of the (i -l)th coordinate system. 

si: position of the center of mass of link i from the origin of the ith coordinate system. 

mi: total mass of link i. 

Ii : inertia matrix of link i about its center of mass with reference to the base coordinate 
system. 

Initial conditions: 

COo = roo = o. 
Vo = g = (gx, gy' gz l to include gravity, and I gl = 0.98062 mls 2 • 

fn+l = fe = external force fe exerting on link n. 
Dn+l = De = external moment De exerting on link n. 
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Table 4. Parallel Newton-Euler (PNE) Algorithm. 

Given iIi, mi, ip7, iSi , iIi, and i-I R i, for 1 :5 i :5 n, this algorithm computes the generalized 
joint torque/force 'ti parallelly. 

Nl. For i = 1 to n parallelly do /*HLR equations*/ 

°Ri = °Ri _1 i-I Ri 

N2. For i = 1 to n parallelly do /*parallelly compute*/ 

Zi = °Ri Zo , Zo = [0, 0, I]T 

p7 = °Ri ip7 

Si = °Ri iSi 

N3. For i = 1 to n parallelly do /*parallelly compute*/ 

bi = Zi-l iIi (1 - Ai) 

For i = 1 to n parallelly do /*HLR equations*/ 

N4. For i = 1 to n parallelly do /*parallelly compute*/ 

bi = (Zi-I iii + Oli-I x Zi-I iIi) (1 - Ai) 

For i = 1 to n parallelly do /*HLR equations*/ 

cOi = cOi-l + bi 

N5. For i = 1 to n parallelly do /*parallelly compute*/ 

bi = cOi x p7 + Olj x (Oli x p7) + (zi-I qi + 2 Oli X (Zi-l qi)) Ai 

For i = 1 to n parallelly do /*HLR equations*/ 

N6. For i = 1 to n parallelly do /*parallelly compute*/ 

ai = cOi x Si + Oli X (Oli x sJ + Vi 

N7. For i = 1 to n parallelly do /*parallelly compute*/ 

N8. For i = 1 to n parallelly do /*parallelly compute*/ 

iOli = iRo Oli = (oRil Oli 

.. . . ° T' 
100i = IRo Oli = ( Rj) Oli 
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iN. - iI. im. + iW· x (iI. i r.,.) 
,- 1 1 1 1 Ull 

Ni= °Ri iNi 

N9. For i = 1 to n parallelly do /*HLR equations*/ 

fi = fi+l +Fi 

NIO. For i = 1 to n parallelly do /*parallellycompute*/ 

bi = Ni + (pi + 8i) x Fi + pi X fi+l 

For i = 1 to n parallelly do /*HLR equations*/ 

Nll. For i = 1 to n parallelly do /*parallelly compute*/ 

{ 
(nJ Zi-l • iO"i = 0 

'ti = T 
(fi) Zi-l ' ifA.i = 1 

END 

where 

i-l Ri: 3x3 rotation matrix indicate the orientation of link i coordinates referenced to link 
(i -1) coordinates. 

ipi: the origin of the ith coordinate frame with respect to the (i-1)th coordinate system, 
expressed with respect to link i coordinates. 

iSi : position of the center of mass of link i from the origin of the ith coordinate system, 
expressed with respect to link i coordinates. 

iIi: inertia matrix of link i about its center of mass, expressed with respect to link i 

coordinates. 

i Wi: angular velocity of link i with respect to the ith coordinate frame. 

iNi: total external moment exerted on link i at the center of mass, expressed with respect 
to link i coordinates. 

A.i equal to 0 if link i is rotational; equal to 1 if link i is translational. 
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Table 5. The Composite Rigid-Body Method for Forward Dynamics Computation. 

/* Compute the inertia matrix H(q) */ 

Mj = M j +1 +mj 

1 * * Cj = -(mj(sj + Pj ) + M j +1(cj+l + Pj)) 
Mj 

Ej =Ej+1 +MNCj+l +Pj -cj l'(Cj+l +Pj -cj)I3x3 

* * T -(Cj+l +Pj -Cj)(Cj+l +Pj -Cj) l+ Ij 

* T * +mj[(sj+Pj -Cj) '(Sj+Pj -cj)I3x3 

* * T -(Sj+Pj -Cj)(Sj+Pj -Cj) ] 

where 1 ~ j ~ n - 1. 

if joint j is rotational 

if joint j is translational 

if joint j is rotational 

if joint j is translational 

* l~i~j-l, 2~j~n 
Di,j = Di+l,j + Pi X f(i+l),j 

if joint j is rotational 

if joint j is translational 

where 1 ~ i ~ j , 1 ~ j ~ n. 

/* Compute the bias torque vector b */ 

b = C(q, (i)q(t) + G(q) 

/* Solve the system of linear equations */ 

H(q)ij(t) = 't(t) - b 

(5-a) 

(5-b) 

(5-c) 

(5-d) 

(5-e) 

(5-f) 

(5-g) 

(5-h) 

(5-i) 

(5-j) 
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where 

Mj : total mass oflink:s j through n. 

Cj: the location of the composite center of mass of links j through n with reference to the 
(j -l)th coordinate frame. 

E j: the moment of inertia matrix of the composite system of links j through n. 

F j : total force exerted on link: i. 

Nj : total moment exerted on link i. 

fjj: the force exerted on joint i due to the motion of the composite system of links j 
through n. 

Djj: the moment exerted on joint i due to the motion of the composite system of link j 
through n. 

hij: the (i,j)th component of inertia matrix. 

C(q, it): nxn matrix specifying Centrifugal and Coriolis effects. 

G(q): nxl vector specifying the effects due to gravity. 

1:(t): generalized applied force/torque vector. 

Initial conditions: 

Mn=mn 
* cn =Sn +Pn 

En=In 
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Table 6. Forward Jacobian Computation 

Given a desired reference coordinate frame k, 0 ~ k ~ n, this algorithm computes the Jacobian 
matrix with respect to the desired reference coordinate frame k for an n-jointed manipulator. 

Jl. [Forward Recurrence.] 

for i = k+1 step 1 to n, do 

kRj = kRj _1 j-I R j 

kpj = kpj _1 _ kRj jp; 

end {for} 

J2. [Backward Recurrence.] 

for i = k-1 step -1 to 1, do 

kRj = kRj+l jRT+I 

kpj = kpj+1 + kRj+1 j+Ip;+1 

end {for} 

J3. [Jacobian Computation.] 

for i = 1 step 1 to n, do 

k~j = (1 - Aj) kRj 7.0 

kJ.1j = (1 - Aj)( k~j X (- kpj )) + Aj( kRj 7(0) 

end {for} 

where initially Zo = (0, 0, 1l, kRk = 13x3 , kpk = 03xl . 

(6-a) 

(6-b) 

(6-c) 

(6-d) 

(6-e) 

(6-f) 
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Table 7. Parallel Composite-Rigid-Body Algorithm. 

Given 1:(t), q, q, mi, ip;, iSi , iIi, and i-I R i , for 1 ~ i ~ n, this algorithm computes the joint 

acceleration vector ij(t) parallelly. 

Cl. For i = 1 to n parallelly do /*HLR equations*/ 

°Ri = °Ri_1 i-I Ri 

C2. For i = 1 to n parallelly do /*parallelly compute*/ 

where Z() = (0, 0, ll. 

C3. Initialize Mn = mn . 
For j = 1 to n-l parallelly do /*HLR equations*/ 

Mj = Mj +1 +mj 

C4. (i) Initialize Cn = Sn + p~ . 
(ii) For j = 1 to n-l parallelly do /*parallelly compute*/ 

Mj +1 
aj=--

Mj 

mj * * 
bj = --;;t:(Sj + Pj) + ajPj 

J 

(iii) For j = 1 to n-l parallelly do /*HLR equations*/ 

CS. (i) Initialize En = In . 
(ii) For j = 1 to n parallelly do /*parallelly compute*/ 

bj = Mj +1 [(Cj+1 + P j - cjl (Cj+1 + P j - Cj )13x3 

- (Cj+1 + P j - Cj)(Cj+1 + P j - cjll + Ij 

+mj[(sj+pj -cjl (Sj+pj -cj)13x3 

-(Sj+Pj -Cj)(Sj+pj -cjll 

(iii) For j = 1 to n-l parallelly do /*HLR equations*/ 

Ej = Ej+1 + bj 
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C6. For j = 1 to n parallelly do /*parallelly compute*/ 

F j = Zj-l X (Mjcj) ( 1 - Aj ) + AjMjzj_l 

C7. (i) Initialize f ij =Fj , 1 ~i ~j, 1 ~j ~n. 
(ii) For j = 1 to n parallelly do /*parallelly compute*/ 

Djj = N j + Cj x Fj 

(iii) For j = 2 to n do 
For i = 1 to j-l parallelly do /*parallelly compute*/ 

bij = P; x F j , 1 ~ i ~ j -1 , 2 ~ j ~ n . 

(iv) 1 ~ i ~ j -1, 2 ~ j ~ n parallelly compute /*HLR equations*/ 

Dij = D(i+l),j + bij 

CS. 1 ~ i ~ j, 1 ~ j ~ n, parallelly compute /*parallelly compute*/ 

{
zr_l Dij ,if joint i is rotational 

hij = T . .. ., . 
zi-l f ij , If Jomt I IS translatIOnal 

C9. Parallelly compute the bias vector b /*HLR equations*/ 

b = C(q,q) q(t) + G(q) 

CIO. Parallelly solve the system equation for q(t) /*parallel Cholesky factorization */ 

H(q)q(t) = y = 't(t) - b 
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Table 8. Parallel Forward Jacobian Computation 

Given a desired reference coordinate frame k, 0 ~ k ~ n, this algorithm parallelly computes 
the Jacobian matrix with respect to the desired reference coordinate frame k for an n-jointed 
manipulator. 

J1. [Compute kRi .] 

for i = k+l to n andj = k-l step (-1) to 1 parallelly do /*HLR equations*/ 

kRi = kRi _1 i-I Ri (forward) 

kR - kR jRT 
j - j+1 j+1 (backward) 

end {for} 

J2. [Compute k pi .] 

for i = k + 1 to n and j = k -1 step (-1) to 1 parallelly do /*HLR equations * / 

kpi = kPi _1 - kRi ip; (forward) 

k _ k kR j+1 * 
Pj - Pj+1 + j+1 Pj+1 (backward) 

end {for} 

J3. [Compute kPi in one time step.] 
for i = 1 to n parallelly do /*parallelly compute*/ 

kPi = (1 - Ai) kRi Zo 

J4. [Compute kJ1i in one time step.] 
for i = 1 to n parallelly do /*parallelly compute*/ 

kJ1i = (1- Ai)(kpi X (_kpi )) + Ai(kRi Zo) 
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Report on the Group Discussion about 
NEURAL NETWORKS IN ROBOTICS 

CarmeTo"as 
Institut De Cibernetica 

Diagonal 647, 2s planta 
08028 - Barcelona 

Spain 

The discu.ssion developed around the following four topics: advancements that have led 
to the resurgence of neural network (NN), operations that NN are best suited for, main appli­
cations, and key problems that need to be solved. 

Concerning the advancements, the contributions of Hopfield, Hinton and Sejnowski 
were mentioned. Hopfield (Proc. Natl. Acad. Sci., USA, vol. 79, pp. 2554-2558, Apri11982) 
characterized a NN as a dynamical system and showed that stored patterns correspond to 
attractors of such a system. Hinton and Sejnowski (Proc.IEEE Conf. Compo Vision and Pat. 
Recog., pp. 448-453, 1983) pushed this analogy further in characterizing a NN as a thermo­
dynamical system, in which patterns are retrieved through a simulated annealing process; 
these authors also endowed their model network (named "Boltzmann machine") with a learn­
ing algorithm based on the Boltzmann equation. Besides these contributions, what has made 
the real difference between the 60's - when NN started to develop - and the 80's - in 
which this field has flourished - is that the technology needed to build truly parallel NN has 
become available. 

Neural networks seem to be well-suited to carry out constraint satisfaction, constrained 
optimization, pattern association, generalization and learning. It was pointed out that general­
ization in a fuzzy world is interesting, but the application of neural generalization to the con­
struction of exact mappings (e.g., inverse kinematics) is not. Everybody agreed on the gen­
eral statement, but not on the example chosen, since, under some hypotheses, there is no con­
ventional algorithm to find inverse kinematics. 

Several successful applications of NN were cited along the discussion. Besides the con­
ventional ones, mainly in the signal processing field, three more were mentioned: space-ship 
orientation, strategic planning, and path planning. The former one has been developed at JPL 
and has been tested against another procedure to accomplish the same task based on artificial 
intelligence techniques; while the AI-based product requires 1MB of memory, the NN-based 
one requires 4KB to achieve a 100% retrieval performance with 90% accuracy. At the 

NATO AS! Series, Vol. F 66 
Sensor-Based Robots: Algorithms and Architectures 
Edited by C. S. George Lee 
© Springer-Verlag Berlin Heidelberg 1991 
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Imperial College of Science and Technology, UK, there is work in progress on the application 
of NN to strategic planning; this is accomplished by formulating such kind of planning as a 
constraint optimization problem, the main difficulty being the establishment of a metric in a 
symbolic space. An application of NN to path planning· has been developed at Princeton 
University, which is reminiscent of the potential-field approach to this problem. It is impor­
tant to mention that DARPA has allocated 40M dollars for a period of two years to assess the 
specific areas on which NN are more likely to have impact. 

Three key problems were identified and an open question was raised, all of which can be 
posed in an interrogative form as follows. What is a useful representation of a problem for a 
NN to be able to solve it efficiently? Which analog/digital neural models scale up? How can 
the branching underlying if-then rules be implemented in NN? Are NN adequate for closed­
chain robot control? Answers to these questions will help to clarify the field of NN and its 
impact on robotics. 
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4800 Oak Grove Drive 
Pasadena, CA 91109 
phone: 818-354-9218 

Professor Luis Basanez (P) 
Institut de Cibemetica (UPC/CSIC) 
Diagonal 647, 2a planta 
08028 Barcelona 
SPAIN 
phone: (3) 249 28 42 
Telex: 52 821 UPC E 

Dr. Antonio Blcchl (P) 
University of Pis a 
Scuola Superiore "S. Anna" 
Via Carducci, 40 
56100 Pisa 
ITALY 

Dr. Giorgio Buttazzo (L) 
Center "E. Piaggio", 
Faculty of Engineering 
University of Pis a 
Via Diofisalvi, 2 
56100 Pisa 
ITALY 
phone: (50) 444780 

Dr. James L. Crowley (P) 
Institut Polytechnique de Grenoble 
LIFlA-IMAG,46 Ave. Felix Viallet 
38031 Grenoble 
FRANCE 

Professor Hugh G. Durrant-Whyte (P) 
Department of Engineering Science, 
University of Oxford, 
Parks Road, 
Oxford, OXI 3PJ, 
United Kingdom 
phone: (0865) 273146 

Professor Eddie Grant (L) 
The Turing Institute 
George House 
36 N Hanover St. 
Glasgow, G12AD 
United Kingdom 

Dr. Thomas Henderson (P) 
INRIA (Sophia-Antipolis) 
2004 Route des Lucioles 
06565 Valbonne Cedex 
FRANCE 

Professor Vorgo Istefanopulos (P) 
Bogazici University 
Electrical-Electronic Engineering Dept. 
P.K.2 Bebek, Istanbul 
TURKEY 
phone: (90)-1-1631500 Ext. 422 

Dr. Juan Juan (P) 
Institut de Technologia, S.A. 
Parc Tecnologic del Valles 
08290 Cerdanyola 
Barcelona, SPAIN 
phone: 343.580.10.00 

t L = Lecturer; P = Participant; C = Program Committee Member. 
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Professor Robert B. Kelley (L) 
Electrical, Computer, and 
Systems Engineering Department 
Rensselaer Polytechnic Institute 
Troy, New York 12180-3590 
phone: 518-276-2653 

Dr. Francis G. King (L) 
Supervisor 
Manufacturing Development Center 
Ford Motor Company 
24500 Glendale Avenue 
Detroit, Michigan 48239 
phone: 313-592-2367 

Professor S. Y. Kung (L) 
Department of Electrical Engineering 
Princeton University 
Princeton, NJ 08544 
phone: 609-452-3780 

Professor C. S. George Lee (C, L) 
School of Electrical Engineering 
Purdue University 
West Lafayette, Indiana 47907-0501 
phone: 317-494-1384 

Professor P. Levi (P) 
Universitiit Karlsruhe, Fakultiit fiir Informatik 
Institut fiir Proze~rechentechnik und Robotik 
P.O. Box 69 80, D-75oo Karlsruhe 1, FRG 
phone: 721/608-3957 

Dr. J. Majumdar (L) 
Universitiit Karlsruhe, Fakultiit fiir Informatik 
Institut fiir Proze~rechentechnik und Robotik 
P.O. Box 6980, D-75oo Karlsruhe 1, FRG 
phone: 721/608-3957 

Professor D. E. Orin (L) 
Department of Electrical Engineering 
Ohio State University 
2015 Neil Avenue 
Columbus, Ohio 43210 
phone: 614-292-3064 
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Professor Ulrich Rembold (C, L) 
Universitiit Karlsruhe, Fakultiit fiir Informatik 
Institut fiir Proze~rechentechnik und Robotik 
P.O. Box 69 BO, 0-7500 Karlsruhe 1, FRG 
phone: 721/608-3957 

Professor George N. Sarldls (P) 
Electrical, Computer, and 
Systems Engineering Department 
Rensselaer Polytechnic Institute 
Troy, New York 12180-3590 
phone: 518-276-6076 

Professor Joao Jose dos Santos Sen­
tlerlro (P) 
Centro de Analise e Processamento de Sinais -
Complexo 1 do INIC 
Instituto Superior Technico 
Av. Rovisco Pais 
1096 Lisboa Codex 
PORTUGAL 
phone: 011 3511 572399 - ext. 359 

Dr. thierry Simeon (P) 
L.A.A.S. 
7 Avenue du colonel Roche 
31400 Toulouse 
FRANCE 
phone: 61.33-63-49 

Dr. Sharon Stansfield (P) 
Sandia National Labs 
P. O. Box 5800 
Albuquerque, New Mexico 

Professor Harry E. Stephanou (C, P) 
Center for Advanced Technology 
in Automation and Robotics 
CII Building, Room 8005 
Rensselaer Polytechnic Institute 
Troy, NY 12180-3590 
phone: 518-276-6156 
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Institut de Cibemetica 
Diagonhl647, 2a planta 
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SPAIN 
phone: (3) 249.28.42 

Professor Spyros Tzafestas (P) 
Control and Robotics Group, 
Computer Engineering Div. 
Nationhl Technichl University 
Zografou 15773 
Athens, GREECE 
phone: 0030/ln757504 

Professor Andrew K. C. Wong (L) 
P AMI Lab, Systems Design Engineering 
University of Waterloo 
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Canada N2L 3G 1 
phone: 519-999-4649 
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NATO ASI Series F 
Including Special Programmes on Sensory Systems for Robotic Control (ROB) and on Advanced 
Educational Technology (AET) 

Vol. 1: Issues in Acoustic Signal - Image Processing and Recognition. Edited by C. H. Chen. 
VIII, 333 pages. 1983. 

Vol. 2: Image Sequence Processing and Dynamic Scene Analysis. Edited by T. S. Huang. IX, 
749 pages. 1983. 

Vol. 3: Electronic Systems Effectiveness and Life Cycle Costing. Edited by J. K. Skwirzynski. 
XVII, 732 pages. 1983. 

Vol. 4: Pictorial Data Analysis. Edited by R. M. Haralick. VIII, 468 pages. 1983. 

Vol. 5: International Calibration Study of Traffic Conflict Techniques. Edited by E. Asmussen. 
VII, 229 pages. 1984. 

Vol. 6: Information Technology and the Computer Network. Edited by K. G. Beauchamp. VIII, 
271 pages. 1984. 

Vol. 7: High-Speed Computation. Edited by J. S. Kowalik. IX, 441 pages. 1984. 

Vol. 8: Program Transformation and Programming Environments. Report on a Workshop 
directed by F. L. Bauer and H. Remus. Edited by P. Pepper. XIV, 378 pages. 1984. 

Vol. 9: Computer Aided Analysis and Optimization of Mechanical System Dynamics. Edited by 
E. J. Haug. XXII, 700 pages. 1984. 

Vol. 10: Simulation and Model-Based Methodologies: An Integrative View. Edited by T. I. Oren, 
B. P. Zeigler, M. S. Elzas. XIII, 651 pages. 1984. 

Vol. 11: Robotics and Artificial Intelligence. Edited by M. Brady, L. A. Gerhardt, H. F. Davidson. 
XVII, 693 pages. 1984. 

Vol. 12: Combinatorial Algorithms on Words. Edited by A. Apostolico, Z. Galil. VIII, 361 pages. 
1985. 

Vol. 13: Logics and Models of Concurrent Systems. Edited by K. R. Apt. VIII, 498 pages. 1985. 

Vol. 14: Control Flow and Data Flow: Concepts of Distributed Programming. Edited by M. Broy. 
VIII, 525 pages. 1985. 

Vol. 15: Computational Mathematical Programming. Edited by K. Schittkowski. VIII, 451 pages. 
1985. 

Vol. 16: New Systems and Architectures for Automatic Speech Recognition and Synthesis. 
Edited by R. De Mori, CY Suen. XIII, 630 pages. 1985. 

Vol. 17: Fundamental Algorithms for Computer Graphics. Edited by R. A. Earnshaw. XVI, 1042 
pages. 1985. 

Vol. 18: Computer Architectures for Spatially Distributed Data. Edited by H. Freeman and G. G. 
Pieroni. VIII, 391 pages. 1985. 

Vol. 19: Pictorial Information Systems in Medicine. Edited by K. H. Hahne. XII, 525 pages. 1986. 

Vol. 20: Disordered Systems and Biological Organization. Edited by E. Bienenstock, F. 
Fogelman Soulie, G. Weisbuch. XXI, 405 pages.1986. 

Vol. 21: Intelligent Decision Support in Process Environments. Edited by E. Hollnagel, G. 
Mancini, D. D. Woods. XV, 524 pages. 1986. 
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Vol. 22: Software System Design Methods. The Challenge of Advanced Computing Techno­
logy. Edited by J. K. Skwirzynski. XIII, 747 pages. 1986. 

Vol. 23: Designing Computer-Based Learning Materials. Edited by H. Weinstock and A. Bork. 
IX, 285 pages. 1986. 

Vol. 24: Database Machines. Modern Trends and Applications. Edited by A. K. Sood and 
A. H. Qureshi. VIII, 570 pages. 1986. 

Vol. 25: Pyramidal Systems for Computer Vision. Edited by V. Cantoni and S. Levialdi. VIII, 
392 pages. 1986. (ROB) 

Vol. 26: Modelling and Analysis in Arms Control. Edited by R. Avenhaus, R. K. Huber and 
J.D. Kettelle. VIII, 488 pages. 1986. 

Vol. 27: Computer Aided Optimal Design: Structural and Mechanical Systems. Edited by 
C.A. Mota Soares. XIII, 1029 pages. 1987. 

Vol. 28: Distributed Operating Systems. Theory und Practice. Edited by Y. Paker, J.-P. Banatre 
and M. Bozyigil. X, 379 pages. 1987. 

Vol. 29: Languages for Sensor-Based Control in Robotics. Edited by U. Rembold and 
K. Hormann. IX, 625 pages. 1987. (ROB) 

Vol. 30: Pattern Recognition Theory and Applications. Edited by P.A. Devijver and J. Kittler. XI, 
543 pages. 1987. 

Vol. 31: Decision Support Systems: Theory and Application. Edited by C. W. Holsapple and 
A. B. Whinston. X, 500 pages. 1987. 

Vol. 32: Information Systems: Failure Analysis. Edited by J. A. Wise and A. Debons. XV, 338 
pages. 1987. 

Vol. 33: Machine Intelligence and Knowledge Engineering for Robotic Applications. Edited by 
A. K. C. Wong and A. Pugh. XIV, 486 pages. 1987. (ROB) 

Vol. 34: Modelling, Robustness and Sensitivity Reduction in Control Systems. Edited by 
R. F Curtain. IX, 492 pages. 1987. 

Vol. 35: Expert Judgment and Expert Systems. Edited by J. L. Mumpower, L. D. Phillips, O. Renn 
and V.R.R. Uppuluri. VIII, 361 pages. 1987. 

Vol. 36: Logic of Programming and Calculi of Discrete Design. Edited by M. Broy. VII, 415 
pages. 1987. 

Vol. 37: Dynamics of Infinite Dimensional Systems. Edited by S.-N. Chow and J. K. Hale. IX, 514 
pages. 1987. 

Vol. 38: Flow Control of Congested Networks. Edited by A. R. Odoni, L. Bianco and G. Szego. 
XII, 355 pages. 1987. 

Vol. 39: Mathematics and Computer Science in Medical Imaging. Edited by M. A. Viergever and 
A. Todd-Pokropek. VIII, 546 pages. 1988. 

Vol. 40: Theoretical Foundations of Computer Graphics and CAD. Edited by R.A. Earnshaw. 
XX, 1246 pages. 1988. 

Vol. 41: Neural Computers. Edited by R. Eckmiller and Ch. v. d. Malsburg. XIII, 566 pages. 
1988. 
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Vol. 42: Real-Time Object Measurement and Classification. Edited by A. K. Jain. VIII, 407 pages. 
1988. (ROB) 

Vol. 43: Sensors and Sensory Systems for Advanced Robots. Edited by P. Dario. XI, 597 pages. 
1988. (ROB) 

Vol. 44: Signal Processing and Pattern Recognition in Nondestructive Evaluation of Materials. 
Edited by C. H. Chen. VIII, 344 pages. 1988. (ROB) 

Vol. 45: Syntactic and Structural Pattern Recognition. Edited by G. Ferrate, T. Pavlidis, A. Sanfeliu 
and H. Bunke. XVI, 467 pages. 1988. (ROB) 

Vol. 46: Recent Advances in Speech Understanding and Dialog Systems. Edited by H. Niemann, 
M. Lang and G. Sagerer. X, 521 pages. 1988. 

Vol. 47: Advanced Compuling Concepts and Techniques in Control Engineering. Edited by 
M.J. Denham and A.J. Laub. XI, 518 pages. 1988. 

Vol. 48: Mathematical Models for Decision Support. Edited by G. Mitra. IX, 762 pages. 1988. 

Vol. 49: Computer Integrated Manufacturing. Edited by I. B. Turksen. VIII, 568 pages. 1988. 

Vol. 50: CAD Based Programming for Sensory Robots. Edited by B. Ravani. IX, 565 pages. 1988. 
(ROB) 

Vol. 51: Algorithms and Model Formulations in Mathematical Programming. Edited by S. W. 
Wallace. IX, 190 pages. 1989. 

Vol. 52: Sensor Devices and Systems for Robotics. Edited by A. Casals. IX, 362 pages. 1989. 
(ROB) 

Vol. 53: Advanced Information Technologies for Industrial Material Flow Systems. Edited by S. Y 
Nof and C. L. Moodie. IX, 710 pages. 1989. 

Vol. 54: A Reappraisal of the Efficiency of Financial Markets. Edited by R. M. C. Guimaraes, B. G. 
Kingsman and S. J. Taylor. X, 804 pages. 1989. 

Vol. 55: Constructive Methods in Computing Science. Edited by M. Broy. VII, 478 pages. 1989. 

Vol. 56: Multiple Criteria Decision Making and Risk Analysis Using Microcomputers. Edited by 
B. Karpak and S. Zionts. VII, 399 pages. 1989. 

Vol. 57: Kinematics and Dynamic Issues in Sensor Based Control. Edited by G. E. Taylor. XI, 456 
pages. 1990. (ROB) 

Vol. 58: Highly Redundant Sensing in Robotic Systems. Edited by J. T. Tou and J. G. Balchen. X, 
322 pages. 1990. (ROB) 

Vol. 59: Superconducting Electronics. Edited by H. Weinstock and M. Nisenoff. X, 441 pages. 
1989. 

Vol. 60: 3D Imaging in Medicine. Algorithms, Systems, Applications. Edited by K. H. Hahne, 
H. Fuchs and S. M. Pizer. IX, 460 pages. 1990. 

Vol. 61: Knowledge, Data and Computer-Assisted Decisions. Edited by M. Schader and W. Gaul. 
VIII, 421 pages. 1990. 

Vol. 62: Supercomputing. Edited by J. S. Kowalik. X, 425 pages. 1990. 

Vol. 63: Traditional and Non-Traditional Robotic Sensors. Edited by T. C. Henderson. VIII, 468 
pages. 1990. (ROB) 

Vol. 64: Sensory Robotics for the Handling of Limp Materials. Edited by P. M. Taylor. IX, 343 pages. 
1990. (ROB) 

Vol. 65: Mapping and Spatial Modelling for Navigation. Edited by L. F. Pau. VIII, 357 pages. 1990. 
~~ . 
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Vol.' 66: Sensor-Based Robots: Algorithms and Architectures. Edited by C. S. G. Lee. X, 285 
pages. 1991. (ROB) 

Vol. 67: Designing Hypermedia for Learning. Edited by D. H. Jonassen and H. Mandl. XXV, 457 
pages. 1990. (AET) 

Vol. 68: Neuro-Computing. Algorithms, Architectures and Applications. Edited by F. Fogelman 
Soulie and J. Herault. XI, 455 pages. 1990. 

Vol. 69: Real-Time Integration Methods for Mechanical System Simulation. Edited by E. J. Haug 
and R.C. Deyo. VIII, 352 pages. 1991. 
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